
Distribution authorized to U.S. Government Agencies only. DO NOT DISTRIBUTE TO OTHER
ORGANIZATIONS WITHOUT WRITTEN APPROVAL FROM NCCA.

SOFTWARE DEVELOPMENT
ESTIMATING HANDBOOK

PHASE ONE

CHERI CUMMINGS
MICHAEL GALLO

PAMELA JOHNSON
BARBARA MARSH-JONES

JILL von KUEGELGEN

February 1998

i

Table of Contents

SECTION PAGE

List of Tables….......................................………….. vi

List of Figures….......................................…………... viii

Executive Summary…...…........................ ix

Acknowledgments…..…............... xx

1.0 Introduction......................…...…......... 1-1
 1.1 Handbook Introduction..……….. 1-1
 1.2 Handbook Overview...….. 1-2

2.0 Defining the Problem..….................. 2-1

3.0 Software Database……………………………………………………………… 3-1
 3.1 Introduction...…...... 3-1
 3.2 Ground Rules and Assumptions... 3-2
 3.2.1 Assumptions for Sizing.….. 3-2
 3.2.2 Assumptions for Scope and Distribution of Effort…............ 3-4
 3.2.3 Other Assumptions...….......... 3-5
 3.3 Data Field Definitions..….... 3-5
 3.4 Raw Data.. 3-16
 3.4.1 MITRE Non-Ada Database…..…. 3-16
 3.4.2 MITRE Ada Database.…..….. 3-18

3.4.3 Air Force Space and Missile Systems Center (SMC)
Software Database...…..……. 3-19

 3.4.4 NASA Software Engineering Laboratory (SEL) Database... 3-21
 3.4.5 Navy Internal Data..….. 3-23
 3.4.6 Silver SASET Validation Database.................................….. 3-24
 3.4.7 REVIC Recalibration Database.......................................….. 3-25
 3.4.8 IITRI Database...…... 3-25
 3.5 Results.. 3-26
 3.6 Conclusions.. 3-28
 3.7 Future Efforts.. 3-28

4.0 Effort Analysis: Significant Drivers..…...... 4-1
 4.1 Introduction... 4-1
 4.2 Raw Data.. 4-1
 4.3 Methodology and Results... 4-2
 4.3.1 Level One.....….. 4-2
 4.3.1.1 Mission.. 4-2
 4.3.1.2 Counting Convention... 4-6
 4.3.1.3 Language.. 4-7
 4.3.1.4 Phasing... 4-9
 4.3.2 Level Two…... 4-11
 4.3.3 Level Three (Program) and Level Four (CSCI).............…... 4-12
 4.4 Conclusions.. 4-20

ii

 4.5 Weaknesses... 4-21
 4.6 Future Efforts.. 4-21

5.0 Effort Analysis: Normalized Regressions......…....................................... 5-1
 5.1 Introduction... 5-1
 5.2 Review of the NCCA Normalized Software Effort Database.............. 5-1
 5.3 Partitioning the Data... 5-4
 5.4 Analytical Approach...…... 5-4
 5.5 Regression Results..…. 5-7
 5.5.1 Traditional Regressions..….. 5-8
 5.5.1.1 Round One Eliminations.. 5-9
 5.5.1.2 Round Two Eliminations.. 5-10
 5.5.1.3 Round Three Eliminations...................................... 5-10
 5.5.2 Non-Traditional Regressions: Set One.........................…... 5-15
 5.5.3 Non-Traditional Regressions: Set Two..........................….. 5-16
 5.5.4 Revised Traditional Regressions...................................…... 5-18
 5.6 Evaluation of Program-Level versus CSCI-Level Regressions........... 5-19
 5.7 Recommendations.. 5-24
 5.8 Conclusions.. 5-26
 5.9 Future Efforts.. 5-28

6.0 Effort Analysis: Non-Normalized Productivity Factors.................…...... 6-1
 6.1 Introduction... 6-1
 6.2 Data.. 6-1
 6.3 Methodology and Results.. 6-2
 6.3.1 MIS Programs..…... 6-2
 6.3.2 Weapon System Programs - Primarily Assembly..…..….…. 6-4
 6.3.3 Weapon System Programs - 100 Percent Assembly…....... 6-5
 6.3.4 Physical Code Counting Convention.............................…... 6-6
 6.3.5 Unknown Code Counting Convention.............................….. 6-7
 6.3.6 Logical Code Counting Convention - Phasing Unknown….. 6-7
 6.4 Recommendations.. 6-8
 6.5 Conclusions.. 6-9

 6.5.1 Strengths.. 6-9
 6.5.2 Weaknesses....…... 6-9

7.0 Effort Analysis: Overall Process……….......................................….….…... 7-1

8.0 Schedule Analysis..…… 8-1
 8.1 Introduction...… 8-1
 8.2 NCCA Schedule Databases……..… 8-1

 8.2.1 Ground Rules and Assumptions...................................….… 8-1
 8.2.2 Raw Schedule Database...… 8-2
 8.2.3 NCCA Normalized Schedule Database................................. 8-2
8.3 Methodology and Results…………………………..............................… 8-4

 8.3.1 Approach One...….. 8-4
 8.3.2 Approach Two..…... 8-5
 8.4 Recommendations......…... 8-7
 8.5 Conclusions....................…... 8-8
 8.6 Future Efforts....................…... 8-9

iii

9.0 Labor Rate Analysis….. 9-1
 9.1 Introduction... 9-1
 9.2 NCCA Labor Rate Databases... 9-1

9.2.1 Ground Rules and Assumptions....................................…... 9-1
 9.2.2 Data Sources……………….. 9-2
 9.2.3 Raw Labor Rate Database.………………............................ 9-5
 9.2.4 NCCA Normalized Labor Rate Database…………………… 9-6

 9.3 Methodology and Results... 9-7
 9.3.1 Average Labor Rate Analysis..…... 9-8

 9.3.2 Regression Analysis..…... 9-9
 9.3.2.1 Regression Analysis Set One................................ 9-10
 9.3.2.2 Regression Analysis Set Two................................ 9-10
 9.4 Recommendations.. 9-11
 9.5 Conclusions.. 9-13
 9.6 Additional Considerations...............................…................................ 9-13
 9.7 Future Efforts..….............................. 9-13

10.0 Risk Analysis…... 10-1
 10.1 Introduction... 10-1
 10.2 NCCA Risk Analysis Databases…….. 10-1
 10.2.1 Ground Rules and Assumptions.. 10-1
 10.2.2 Raw Risk Analysis Database... 10-2
 10.2.3 NCCA Normalized Risk Analysis Database………………. 10-2
 10.3 SLOC Growth Methodology, Results and Conclusions…………….. 10-3
 10.3.1 Approach One………………………………………………… 10-3
 10.3.1.1 Approach One Methodology and Results………. 10-3
 10.3.1.2 Approach One Conclusions………………………. 10-4
 10.3.2 Approach Two………………………………………………… 10-5
 10.3.2.1 Approach Two Methodology and Results………. 10-5
 10.3.2.2 Approach Two Conclusions………………..……. 10-6
 10.3.3 Approach Three……………………..................................... 10-7
 10.3.3.1 Approach Three Methodology and Results......... 10-7
 10.3.3.2 Approach Three Conclusions……………………. 10-9
 10.3.4 Recommended Approach………………………………..…. 10-9
 10.4 Code Condition Change Methodology, Results and Conclusions…. 10-10
 10.4.1 Approach One ……………….. 10-10
 10.4.1.1 Mean Percentage…………………….................... 10-10
 10.4.1.2 Median Percentage………................................... 10-11
 10.4.1.3 Mean Percentage Points…………………………. 10-11

10.4.1.4 Median Percentage Points.………………………. 10-12
 10.4.2 Approach Two ……………... 10-13
 10.4.3 Recommended Approach for Code Condition Change...... 10-14
 10.5 Overall Recommended Approach……………………........................ 10-15
 10.5.1 Example One... 10-16
 10.5.2 Example Two... 10-18
 10.9 Future Efforts..................................….. 10-19

11.0 Conclusions…... 11-1

iv

Appendix A – Defining the Problem

 NCCA Software Program Definition Form……………………………….….. A-1
 NCCA Software Program Definition Form, Data Dictionary………………. A-4
 NCCA Historical Software Data Request Form...........................……….... A-9
 NCCA Historical Software Data Request Form, Data Dictionary……….... A-13
 NCCA Historical Software Data Request Form’s Mapping

Procedures.……………………………………………………………. A-20

Appendix B – Software Database

 NCCA Raw Software Effort Database Key.................................…………. B-1
 Navy Internal Data Sources...…..………….... B-11
 NCCA Raw Software Effort Database: Duplicate Data Points…………... B-15

Appendix C – Effort Analysis: Significant Drivers

 Statistical Measures, Methods, and Procedures.......................………...... C-1
 Results: Section 4 - Effort Analysis: Significant Drivers....………..…….. C-9
 Mann-Whitney U Test Results: Section 4 - Effort Analysis:
 Significant Drivers...………...… C-13

Appendix D – Effort Analysis: Normalized Regressions

 Program-Level Regressions (Traditional/Non-Traditional/Revised
 Traditional - One Efactor)...………......…. D-1
 CSCI-Level Regressions (Traditional/Non-Traditional/Revised
 Traditional - One Efactor)......................................………...……... D-10
 Program-Level Regressions (Traditional - Two Efactors).........………..... D-19
 CSCI-Level Regressions (Traditional - Two Efactors)...............……….... D-25
 Final Program-Level Regressions: Backup Data
 Traditional...………......... D-31
 Non-Traditional..………............ D-40
 Revised Traditional...………....... D-47
 Final CSCI-Level Regressions: Backup Data
 Traditional...….………... D-57
 Non-Traditional...………..... D-69
 Revised Traditional...………..... D-78
 Percent New Tradeoff (Program-Level).....................................………... D-91
 Comparison of Traditional, Non-Traditional and Revised
 Traditional Regressions (Program- versus CSCI-Levels)….….... D-99

Comparison of Traditional, Non-Traditional and Revised
 Traditional Regressions (Program- and CSCI-Levels)....….….... D-102

Appendix E – Schedule Analysis

 NCCA Raw Schedule Database...…...………... E-1
 NCCA Normalized Schedule Database..............................……….......... E-2
 Non-Parametric Test Results...……….. E-3
 Statistical Results of the NCCA Normalized Schedule Database……... E-10

v

 Non-Significant Schedule Regressions……………………….….…..…… E-15
 Schedule Regression Analysis………………………………………...….. E-16
 Equation [8-1]...……. E-16
 Equation [8-2]..…….…. E-22
 Equation [8-3] ..……... E-29
 Equation [8-4] ..……..…. E-36
 Equation [8-5]...……. E-43
 Equation [8-6]...……... E-50

Appendix F – Labor Rate Analysis

 NCCA Labor Rate Database Key…...…….….… F-1
 FPRA and Contractor-Specific Labor Rate Application...........……….…. F-2
 Labor Rate Analysis: Factor and Regression Analyses..........…………. F-6
 Factor Analyses…………………………………………………..…. F-6
 Regression Analyses………………………………………………… F-12

Wilcoxon Two-Sample Test Results.....................................………....…. F-19
 Average Burden Rates..………...... F-24

Appendix G – Risk Analysis

 SLOC Growth CSCI-Level Analysis and Data.........………...............…... G-1
 AIS/MIS Data Points...………..…. G-3
 NCCA Raw SLOC Growth Database...................................………….…. G-4
 NCCA Normalized SLOC Growth Database…………………….………... G-5
 Non-Parametric Test Results……………………………………………..... G-6
 Regression Analyses (SLOC Growth – Approach Two)……………..….. G-9
 Regression Analyses (SLOC Growth – Approach Three)……………..… G-45

vi

List of Tables

1 Evolution of the NCCA Normalized Software Effort Database................... xii
2 NCCA Normalized Software Effort Database and Source Databases....... xiii

3-1 Allocation of New HOL and New Assembly SLOC..................................... 3-3
3-2 NCCA Raw Database Summary……….. 3-26
3-3 NCCA Raw Database Data Sources……... 3-27
3-4 Summary of the NCCA Raw Database by Programming Language.......... 3-27
3-5 Summary of the NCCA Raw Database by Mission Area............................ 3-27
3-6 Summary of the NCCA Raw Database by Platform................................... 3-27

4-1 MIS and Weapon System Data Sets... 4-3
4-2 ESLOC Methods (Strengths and Weaknesses) .. 4-5
4-3 Level One Statistical Results (Mission) ... 4-6
4-4 Physical and Logical Data Sets...…. 4-7
4-5 Level One Statistical Results (Counting Convention) 4-7
4-6 HOL and Assembly Data Sets... 4-8
4-7 Level One Statistical Results (Language) ... 4-8
4-8 Normalized and Partially Normalized Data Sets... 4-10
4-9 Level One Statistical Results (Phasing) .. 4-10
4-10 Program, CSCI, and 1CSCI Data Sets... 4-11
4-11 Level Two Statistical Results... 4-11
4-12 Level Three and Level Four Data Sets.. 4-14
4-13 Level Three and Level Four Statistical Results (Code Condition) 4-15
4-14 Level Three and Level Four Statistical Results (Platform) 4-16
4-15 Level Three and Level Four Statistical Results (Mission Area) 4-17
4-16 Level Three and Level Four Statistical Results (Software Class) 4-17
4-17 Level Three and Level Four Statistical Results (Software Status) 4-18
4-18 Level Three and Level Four Statistical Results (Software Mode) 4-19
4-19 Level Three and Level Four Statistical Results (Language) 4-20
4-20 Level Three and Level Four Statistical Results (Size) 4-20
4-21 Level Three and Level Four Statistical Results (Summary) 4-21

5-1 Arriving at the NCCA Normalized Database.. 5-2
5-2 Normalized Database by Source Database... 5-3
5-3 Key Aspects of Remaining Source Databases.. 5-3
5-4 Summary of Data Partitions... 5-4
5-5 Summary of Regressions... 5-8
5-6 Subset Distribution of Data Points Across Source Databases................... 5-12
5-7 Summary of Validation Database.. 5-20
5-8 Summary of Program versus CSCI Differences... 5-21
5-9 Program-Level Equations Remaining.. 5-24
5-10 CSCI-Level Equations Remaining.. 5-24

6-1 Productivity Factor (MIS Programs) .. 6-3
6-2 Productivity Factor (30% Assembly Programs) ... 6-4
6-3 Productivity Factor (100% Assembly Programs) 6-5
6-4 Productivity Factor (Physical Programs) ... 6-6
6-5 Productivity Factor (Unknown Code Condition Programs) 6-7

vii

6-6 Productivity Factor (Logical Programs, Phasing Unknown) 6-8
6-7 Summary of Top-Level Productivity Factors.. 6-9

7-1 Regression versus Factor Performance... 7-4

8-1 NCCA Normalized Schedule Database…………………………………….. 8-4
8-2 NCCA Normalized Schedule Database Partitions..................................... 8-5
8-3 Statistical Results of Partitions……………………………………................ 8-5
8-4 Comparison of Equation [8-2] to Other Traditional Schedule Estimation
 Models…... 8-7

9-1 NCCA Raw Software Labor Rate Database…………………………............ 9-5
9-2 NCCA Normalized Software Labor Rate Database FY97$K (Cost through
 G&A).. 9-6
9-3 Average Labor Rate Analysis (Cost through G&A) 9-9
9-4 Nonparametric Analysis... 9-9

10-1 Mean Percent SLOC Growth Analysis... 10-4
10-2 Median Percent SLOC Growth Analysis.. 10-5
10-3 Summary of Approach Two - Size Growth Estimating Relationships......... 10-6
10-4 Residuals of Actual Total SLOC versus Estimated Total SLOC................. 10-7
10-5 Programs with Reuse... 10-8
10-6 Approach Three Size Growth Estimating Relationships............................. 10-8
10-7 Software Growth Estimating Relationships.. 10-9
10-8 Summary of the Statistics for SLOC Growth Methodology........................ 10-9
10-9 Code Condition Mean Percentage Statistics.. 10-11
10-10 Code Condition Median Percentage Statistics... 10-12
10-11 Code Condition Mean Percentage Point Statistics..................................... 10-13
10-12 Code Condition Median Percentage Point Statistics.................................. 10-13
10-13 Approach Two - Code Condition Estimating Relationships Results........... 10-14
10-14 Summary of Statistics for Code Condition Methodology............................ 10-14

viii

List of Figures

1 Software Development Estimating Process... x

1-1 Software Development Estimating Process... 1-1

3-1 Source Code Example... 3-3
3-2 Example of Software Development Across the Acquisition Phases........... 3-5
3-3 Software Development Phases and Reviews... 3-14
3-4 New Code versus Common Code.. 3-20

4-1 Mission Data Sets.. 4-3
4-2 Counting Convention Data Set.. 4-6
4-3 Language Data Set.. 4-8
4-4 Phases of Software Development.. 4-9
4-5 Phasing Data Set... 4-10
4-6 Level Three and Level Four Data Sets.. 4-14

5-1 Trace of Standard Error and Predict (20) .. 5-6
5-2 Predict (20) Tradeoff.. 5-7
5-3 One Hundred Percent New CSCIs... 5-13
5-4 Effort Discount as a Function of Reuse... 5-17
5-5 Average CSCI Size versus CSCI-Program Differences............................. 5-22
5-6 Percent New versus CSCI-Program Differences.. 5-22
5-7 Program Size versus CSCI-Program Differences...................................... 5-23
5-8 CSCI Count versus CSCI-Program Differences... 5-23

7-1 Effort Estimating Process... 7-1

8-1 NCCA Schedule Databases... 8-3
8-2 Recommended Software Schedule Estimating Process............................ 8-8

9-1 Contractor Cost Data Report, 1921.. 9-2
9-2 Functional Cost-Hour Report, 1921-1.. 9-3
9-3 Cost Performance Report, Format 1.. 9-4
9-4 Cost Performance Report Manpower Loading Report, Format 4.............. 9-4
9-5 Recommended Labor Rate Estimation Process……………….................. 9-12

10-1 Recommended Risk Analysis Process……... 10-16

ix

EXECUTIVE SUMMARY

INTRODUCTION

The Naval Center for Cost Analysis (NCCA) organized an in-house software team of six
analysts to assess NCCA’s software cost estimating process. The team discovered that NCCA
did not have a well defined and consistent process for estimating software cost. NCCA was
using Software Architecture Sizing & Estimating Tool (SASET) and Revised Intermediate
Constructive Cost Model (REVIC) to perform estimates, but in-house guidance on the correct
procedure to develop a software estimate did not exist. After several discussions regarding the
lack of consistency in how NCCA used these models, the team conducted a survey to
determine if other governmental agencies and contractors were experiencing the same
problems. The survey was disseminated to a total of 25 governmental agencies and
contractors. The survey responses indicated that other organizations were experiencing similar
problems, so NCCA decided to conduct an extensive research effort to improve in-house (and
hopefully other organizations’) software cost estimating capabilities.

OBJECTIVE and SCOPE

The NCCA software team’s mission was:

“To provide the individual analyst with the procedures, tools, and training to develop a
defensible and reproducible software life cycle cost estimate.”

NCCA developed goals to ensure that the mission was adhered to and accomplished. There
were two phases to this software research effort. Phase One was the baseline software
development cost research effort. It is this effort which is documented in this handbook. The
Phase One goals were to provide: 1) a centralized and well documented database comprised
of existing software databases, 2) formal procedures and guidelines for developing a software
estimate, 3) top-level software estimating tools, and 4) training. Although the mission of the
software team was to address the software life cycle, the maintenance phase was not
addressed in Phase One. The goals for Phase Two are to collect and summarize all the
documentation on existing commercial software cost models and to focus on data collection
efforts, especially in the Automated or Management Information System (AIS/MIS) domain.

METHODOLOGY and RESULTS

NCCA developed a five-step software development estimating process as detailed in Figure 1.
The handbook is organized according to this process.

x

DEFINE THE PROBLEM

DEVELOP EFFORT
ESTIMATE (MAN-MONTHS)

 PERFORM EQUIVALENT
CODE CONVERSION

DEVELOP SCHEDULE
ESTIMATE (MONTHS)

 PERFORM EFFORT-to-COST ($)
CONVERSION

PERFORM
RISK ANALYSIS

Figure 1: Software Development Estimating Process

The key findings and results (i.e., tools) associated with each step are summarized
below. NCCA contends that the analytical approach used to develop the standard tools
(vice the tools themselves) is the most important aspect of this effort. Therefore, NCCA
strongly recommends that the standard tools not be utilized before the analyst has
completely read and understood: 1) the approach utilized to develop the tools and 2) the
tools’ strengths and weaknesses. This document includes a significant amount of detail
regarding the team’s data normalization and analysis process that should facilitate this
understanding.

Step 1: Defining the Problem

NCCA developed a standard form, “NCCA Software Program Definition Form”, and an
associated data field dictionary, which can be utilized to obtain information on the program
being estimated. Since the Phase One analysis is geared toward the novice software cost
estimator, most of the form targets objective metrics predicated on the results of the analytical
efforts documented herein. Additionally, NCCA developed the form, “NCCA Historical Software
Data Request Form”, and an associated data field dictionary, to aid in the collection of historical
data. Finally, NCCA developed the “NCCA Historical Software Data Request Form’s Mapping
Procedures” form, which documents the mapping procedures that should be utilized when
entering newly obtained historical data into the NCCA Raw Software Effort Database (discussed
in Section 3 - Software Database).

Step 2: Effort Estimation/ESLOC Conversion

NCCA Raw Software Effort Database:

Prior to beginning the analytical efforts, NCCA developed a software database. For Phase One,
the NCCA Raw Software Effort Database drew upon data currently available to NCCA. The
NCCA Raw Software Effort Database consists of 457 unique records or data points; 151

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

xi

program-level and 306 Computer Software Configuration Item (CSCI)-level1 compiled from eight
different databases:

1) MITRE Non-Ada Database
2) MITRE Ada Database
3) Space and Missile Center (SMC) Database
4) NASA Software Engineering Laboratory (SEL) Database
5) Navy (NCCA) Internal Database
6) SASET Validation Database
7) REVIC Recalibration Database
8) IIT Research Institute (IITRI) Database

The database contains 73 attribute fields, however, all fields are not completed for each record.
These fields describe various attributes of the program including size, effort, schedule,
language, and development process. At a minimum, size and effort are provided for each of the
457 data points. The programs were developed from the early 1970s through the 1990s.

NCCA Normalized Software Effort Database:

The NCCA Raw Software Effort Database does not support meaningful analyses. Many of the
records in the database have different units of measure for items such as size, effort and
schedule. NCCA contends that there are two possible approaches to arrive at a normalized
database. The first approach is to filter out any data point that does not meet specified criteria
(e.g., exclude all data points which do not include the software requirements phase). A second
approach is to keep all of the data points, but adjust them as necessary in order to obtain
consistent units of measure (e.g., adjust all data points which don’t include the requirements
phase). The latter approach can be extremely subjective; adjustments can vary tremendously
depending upon the methodology chosen (engineering judgment versus historical data).
Therefore, in order to minimize the amount of uncertainty introduced into the data, NCCA chose
to normalize the database by filtering out those data points which did not satisfy the specified
criteria (i.e., no factors were used to normalize data points).

To properly normalize the database, NCCA attempted to isolate those objective software
metrics which significantly drive productivity by stratifying the data and conducting statistical
non-parametric tests. The following software metrics were proven to be statistically significant
when estimating software productivity:

1) Mission (Domain) – MIS versus Weapon System
2) Counting Convention - Physical versus Logical
3) Language - Assembly versus High Order Language (HOL (e.g., FORTRAN, Jovial))
4) Phasing - Software Specification Review (SSR) through Formal Qualification Test (FQT)

versus System Design Review (SDR) through FQT
5) Code Condition – percent (%) new, % reused (e.g., modified, verbatim, translated, rehosted,

etc.)
6) Development Mode - Embedded versus Non-Embedded

1 There were a total of 329 CSCI-level data points; 306 CSCI-level data points plus 23 program-level data points. These 23
program-level data points contained only one CSCI.

xii

Based on these findings, the NCCA Normalized Software Effort Database included only those
data points that met the following criteria:

1) Mission or Domain was weapon system
2) Counting Convention was logical
3) Development language was HOL
4) Development phases span SDR through FQT
5) Code condition was known
6) Development mode was known
7) Effort in hours or hours per man-month were known (and normalized to 152 hours per man-

month).

As depicted in Table 1 below, the normalization procedure eliminated most of the data points
included in the raw database.

 Initial Number of Data
Points

 Program CSCI
Start: Top-Level 151 3292
î
Normalizing Factors Number of Data Points

Remaining
 Program CSCI
Mission = Weapon System 105 236
î
Code Count = Logical 56 185
î
HOL ≥ 70% 47 146
î
Scope of Effort = SDR through FQT 32 100
î
Code Condition Known 31 97
î
Development Mode Known 31 97
î
Hours/man-month = known 31 97
Final NCCA Normalized Software Effort Database 31 973
Table 1: Evolution of the NCCA Normalized Software Effort Database

The final program-level NCCA Normalized Software Effort Database consists of 31 data points.
The start dates were not provided for all data points. However, the start dates provided were
from 1972 through 1984. These software developments were written in FORTRAN, Ada, and
JOVIAL. The SLOC range is from 9 to 1,113 KSLOC. The total effort ranged from 9 to 10,976
man-months. A majority of the program-level data points are semi-detached, while some
embedded and organic modes are represented. This database includes various missions, such
as: radar, command, control and communications (C3), and simulation, which were installed on
both ground and ship platforms.

The final CSCI-level NCCA Normalized Software Effort Database consists of 97 data points.
Similar to the program-level database, the start dates were not provided for all data points.
However, the CSCI start dates provided were from 1972 through 1991. These software
developments were written in FORTRAN, Ada, CMS-2, JOVIAL, ATLAS and C. The SLOC
range is from 0.411 to 492 KSLOC. The total effort ranged from 2.1 to 5,007 man-months. A

2Three hundred and six CSCI-level data points plus 23 program-level data points that contained only one CSCI.
3Ninety-three CSCI-level data points plus four program-level data points that contained only one CSCI.

xiii

majority of the CSCI-level data points are embedded, while some semi-detached and organic
modes are represented. This database includes various missions, such as: radar, Anti-
Submarine Warfare (ASW), C3, simulation and missile, which were installed on ground, air and
ship platforms.

Table 2 shows which source databases remained after normalization and why the other data
sources were deleted.

 Number of Data Points
Source Database Code Program CSCI Reason for Database Exclusion

MITRE Non-Ada 1 13 38
MITRE Ada 2 0 0 Effort did not reflect SDR through FQT
SMC 3 4 6
NASA SEL 4 14 4
Navy Internal 5 0 45 Program-level data points utilized physical SLOC counting convention
Silver SASET 6 0 0 Code count, hours/man-month, and scope of effort unknown
REVIC Recalibration 7 0 0 Hours/man-month for data points from non-SMC sources could not be verified
IITRI 8 0 4 Did not contain program-level data
TOTAL 31 97

Table 2: NCCA Normalized Software Effort Database and Source Databases

Analysis:

NCCA’s recommended approach to estimating software development effort is to use contractor-
specific data. However, since the majority of the data in the NCCA Normalized Software Effort
Database was previously sanitized (non-program or non-contractor-specific) by the source
database developer, NCCA developed standard normalized estimating relationships. The
normalized estimating relationships estimate effort in man-months (MM) as a function of size. In
this handbook, the size metric used is equivalent new source lines of code (ESLOC). ESLOC
are the weighted sum of new code and reused code. It is generally accepted that adapted
SLOC do not require the full software development effort (design, code, test and
documentation). The ESLOC conversion is typically based on engineering judgment, however,
NCCA developed a unique quantitative approach to ESLOC calculation. The normalized
estimating relationships (which also perform ESLOC calculations) should be utilized if and only
if the program being estimated meets the normalization criteria set forth previously and
contractor-specific data does not exist.

In the event the program being estimated does not meet the normalization criteria, NCCA
developed non-normalized top-level productivity factors from the NCCA Raw Software Effort
Database. While the variances associated with the normalized standard regressions are large,
those associated with the non-normalized productivity top-level standard factors are even larger.
NCCA believes that the magnitude of these variances can be largely attributed to the fact that
the standard regressions and factors reflect industry averages. NCCA believes developing
contractor-specific tools can reduce these variances.

NCCA then analyzed and compared the resulting statistics and associated performance
parameters of the regressions developed. Based on this analysis, the recommended software
effort estimating methodology developed, and documented within this handbook, should be
applied as follows.

xiv

If the program being estimated satisfies all of the following criteria:

1) Mission or Domain is weapon system
2) Counting Convention is logical
3) Development language is HOL
4) Development phases span SDR through FQT
5) Code condition is known
6) Development mode is known
7) Effort in hours or hours per man-month is known

then, the NCCA Normalized Regressions should be utilized as follows:

• If the program being estimated is 100 percent new, apply the following equation at the
program-level:

Effort (MM) = 0.0012 * (New SLOC)[1.1979 + (0.0326 * D1)]
R2 = 0.96; Std Error = 0.42; Predict (20)4 = 58%; n = 31; Range = 9 - 1,113 EKSLOC

where the dummy variable, D1, equals one if the program is embedded and zero otherwise.

• If the program being estimated is equal to or greater than 82 percent reused code, apply the
following equation at the program-level:

 Effort (MM) = 0.0012 * [New SLOC + (1 * Reused SLOC)][1.0085 + (0.0326 * D1)]

R2 = 0.96; Std Error = 0.42; Predict (20) = 58%; n = 31; Range = 9 - 1,113 EKSLOC
where the dummy variable, D1, equals one if the program is embedded and zero otherwise.

• If the program being estimated has less than 82 percent reused code which is evenly
distributed between modified and verbatim code, apply the following equation at the
program-level:

 Effort (MM) = 0.0012 * [New SLOC + (1 * Reused SLOC)][1.1067 + (0.0326 * D1)]

R2 = 0.96; Std Error = 0.42; Predict (20) = 58%; n = 31; Range = 9 - 1,113 EKSLOC
where the dummy variable, D1, equals one if the program is embedded and zero otherwise.

• If the program being estimated has less than 82 percent reused code which is
predominantly verbatim, apply the following equation at the CSCI-level:

 Effort (MM) = 0.023 *[New SLOC + (0.03 * Reused SLOC)][0.8609 + (0.0529 * D1)]

R2 = 0.77; Std Error = 0.67; Predict (20) = 26%; n = 97; Range = 0.4 - 253.4 EKSLOC
where the dummy variable, D1, equals one if the program is embedded and zero otherwise.

If the program being estimated does not satisfy NCCA’s normalization criteria, then the NCCA
Standard Non-Normalized Productivity Factors should be utilized as follows:

4 Predict (20) is the percentage of time the total residuals are within 20 percent of the actual value. See Appendix C for more details
on Predict (20) calculations.

xv

• If the program is MIS and
1) Code condition is unknown = 0.6913 Hrs/Total SLOC

Coefficient of Variation (CV) = 86%; CVest = 132%; n = 17
2) Code condition is known = 0.8240 Hrs/ESLOC

Efactor = 0; CV = 72%; CVest = 103%; n = 17

• If the program is written entirely in Assembly and
1) Code condition is unknown = 2.6504 Hrs/Total SLOC

CV = 120%; CVest = 177%; n = 68
2) Code condition is known = 3.0093 Hrs/ESLOC

Efactor = 0.6; CV = 115%; CVest = 168%; n = 61

• If the program is written significantly (>30%) in Assembly and
1) Code condition is unknown = 3.7383 Hrs/Total SLOC

CV = 100%; CVest = 132%; n = 40

2) Code condition is known = 3.9904 Hrs/ESLOC
Efactor = 0.69; CV = 98%; CVest = 125%; n = 38

• If the counting convention is physical and
1) Code condition is unknown = 0.6357 Hrs/Total SLOC

CV = 124%; CVest = 93%; n = 18

2) Code condition is known = 0.7350 Hrs/ESLOC
Efactor = 0; CV = 104%; CVest = 123%; n = 18

• If the counting convention is unknown and
1) Code condition is unknown = 1.3238 Hrs/Total SLOC

CV = 128%; CVest = 196%; n = 273

2) Code condition is known = 1.6763 Hrs/ESLOC
Efactor = 0.12; CV = 107%; CVest = 215%; n = 262

• If the counting convention is logical, but phasing is unknown and
1) Code condition is unknown = 1.3360 Hrs/Total SLOC

CV = 113%; CVest = 182%; n = 186

2) Code condition is known = 1.8597 Hrs/ESLOC
Efactor = 0.04; CV = 83%; CVest = 161%; n = 185

NCCA used a validation data set to demonstrate and compare the performance of the
regressions and productivity factors; the regressions greatly outperform the productivity
factors, therefore, NCCA strongly encourages the analyst to define the program being
estimated according to the normalization criteria identified previously. For example, if you
have a choice of counting conventions, choose logical so that the normalized regressions, vice
the non-normalized productivity factors, can be used.

xvi

Step 3: Schedule Estimation

NCCA Raw Schedule Database:

NCCA performed a query of the NCCA Raw Software Effort Database to obtain data points that
included schedule as well as effort. The query resulted in a total of 151 program-level data
points. These 151 data points were screened to identify those having schedule dates from SDR
through FQT. Thirty-seven of the 151 points met this criterion and were retained. These data
points constitute the NCCA Raw Schedule Database.

NCCA Normalized Schedule Database:

The 37 data points in the NCCA Raw Schedule Database were then screened further to obtain
the NCCA Normalized Schedule Database. The additional criteria for the NCCA Normalized
Schedule Database were:

1) Effort reflects SDR through FQT
2) Effort in hours or hours per man-month were known (and converted to 152 hours per man-

month).

The resulting 16 data points are a mixture of HOL and Assembly language programs. However,
none of the HOL programs were written in Ada. The mission types are characterized as C3,
radar, and simulation programs that are installed on air, ship, and ground platforms. The total
SLOC ranges from 20 to 1,113 KSLOC, and total development effort ranges from 157 to 10,976
man-months. The associated schedules range from 12 to 74 months. The mean schedule is
33.3 months.

Analysis:

Similar to the effort analysis, NCCA created normalized top-level factors and schedule
estimating relationships where schedule is a function of effort in man-months or size in ESLOC.
The final recommended tool, applicable to weapon system programs with development phases
spanning from SDR through FQT, is:

Schedule (Months) = 5.12 (MM)0.2266 * e (0.3574 * D1)
R2 = 0.64; Std Error = 0.31; Predict (20) = 44%; n = 16; Range = 157 – 10,976 MM

where the dummy variable, D1, equals one if the program is 100 percent new and zero otherwise.

Step 4: Effort-to-Cost Conversion

NCCA Raw Labor Rate Database:

NCCA collected software cost and manning data from 34 weapon system programs. The data
was collected from both cost performance reports (CPRs) and contractor cost data reports
(CCDRs). The raw software cost data is in then-year dollars and includes general and
administrative cost (G&A). The manning data is expressed in man-hours or man-months.

xvii

NCCA Normalized Labor Rate Database:

After scrutiny of the data points, some programs were excluded from the database for one of the
following reasons:

1) Man-hours were not reported.
2) Development phases didn’t reflect SDR-FQT.
3) Major software development problems occurred (i.e., flight test failures) which implied that

these points were outliers.
4) Programs were less than 90 percent complete.

The resulting NCCA Normalized Labor Rate Database has 15 programs. The man-hours
expended to develop the software range from 2K to 793K and the software costs through G&A
range from $317K to $95M in FY97$. The NCCA Normalized Labor Rate Database consists of
aircraft, ships, missiles and electronics programs, representing both cost-plus and fixed-price
contracts and East and West Coast contractors. The first year of development ranged from
1982 to 1992. NCCA did not collect data for MIS programs.

Analysis:

NCCA developed top-level factors for the different populations, in order to conduct non-
parametric tests. Based on the non-parametric tests, NCCA determined that platform type (i.e.,
aircraft versus non-aircraft) was a statistically significant independent variable. Hence, NCCA
developed two types of regressions: with and without dummy variables. NCCA then analyzed
and compared the resulting statistics and associated performance parameters of the factors and
regressions developed. Based on the analysis, NCCA recommends the following regression be
used to convert effort to cost if contractor-specific data is not available:

Cost through G&A

FY97$K = 136.93 * (Labor KHrs)0.98 * e(- 0.40 * D1)
R2 = 0.99; Std Error = 0.13; Predict (20) = 87%; n = 15; Range 2 - 793 Labor KHrs

where the dummy variable, D1, equals one if the program is non-aircraft and zero otherwise.

NCCA also developed a regression for a fully burdened estimate. The price data points utilized
in the regression were estimated by applying average Cost of Money (COM) and fee rates to
the cost through G&A data points in the NCCA Normalized Labor Rate Database. For those
programs where fee was zero or not known, an average rate based on the available data points
was used.

Price

FY97$K = 154.21 * (Labor KHrs)0.98 * e(- 0.39 * D1)

R2 = 0.99; Std Error = 0.13; Predict (20) = 87%; n = 15; Range 2 - 793 Labor KHrs
where the dummy variable, D1 ,equals one if the program is non-aircraft and zero otherwise.

xviii

Step 5: Risk Analysis

NCCA Raw Risk Analysis Database:

NCCA performed a query of the SMC Software Database to obtain data points that included
both actual and estimated SLOC. The query produced 12 program-level and 28 CSCI-level
data points. Next, a search of NCCA’s files provided 10 additional program-level data points.
Finally, one program-level and four CSCI-level data points were collected from an Institute for
Defense Analyses (IDA) study for a total of 23 program-level and 32 CSCI-level data points.

NCCA Normalized SLOC Growth Database:

The NCCA Raw SLOC Growth Database was screened, as follows, to arrive at the normalized
database:

1) Based on the Mann Whitney U test and the Kolmogorov-Smirnov test, the CSCI-level data

(32 data points) was deleted. The tests showed that the means and variances of CSCI and
program-level data points were not equal.

2) Four program-level data points were eliminated because the initial SLOC estimates could

not be verified.

3) Three MIS programs were excluded in order to remain consistent with the effort analysis

results.

This screening resulted in 16 program-level data points. Although NCCA is confident the
software for these programs was developed between Milestones II and III, specific review dates
are unknown. The majority of the program names are also unknown. The range of estimated
SLOC values are 14 to 1,246 KSLOC; nine programs are less than 100 KSLOC. Five programs
are entirely new. All were weapon system programs whose code condition, both new and
reused, was known.

Analysis:

NCCA addressed two areas of risk in the software development estimating process. First,
NCCA addressed software development growth rates that reflect the difference between the
estimated and the actual lines of code. The purpose of this effort was to provide a risk
assessment of the initial software lines of code estimate.

Second, NCCA addressed software code condition risk. Often, the initial sizing estimate reflects
an overestimate of the amount of reused code. NCCA developed a scheme for redistributing
code estimates from reused to new.

NCCA recommends that these two risk areas be applied as follows:

1) To estimate SLOC growth risk, add 22 percent to the initial total SLOC sizing estimate.

xix

2) To estimate code condition risk, add eight percentage points to the initial percent new
estimate (if less than 93 percent) and subtract eight percentage points from the initial
percent reused estimate.

CONCLUSIONS

NCCA accomplished the Phase One mission by providing NCCA analysts with a normalized
database and associated top-level software development estimating tools, which are credible,
reproducible, defensible and well documented. This handbook will equip a cost analyst with the
proper techniques for understanding, developing and utilizing objective software development
estimating tools. Unfortunately, though not surprisingly, the resulting effort, schedule and risk
tools exhibit significant variability, as evidenced by the CVs which are typically higher than 30
percent. This variability is likely due to a variety of factors (e.g., different complexity levels or
various development processes), but NCCA believes the variability can be largely attributed to
the fact that the underlying databases reflect the capabilities of a mix of contractors. We highly
recommend that, whenever possible, the analyst strive to develop software estimates that are
based on contractor-specific data. For those software estimating tasks where historical,
contractor-specific data is not available, the standard (i.e., industry average) tools presented in
this handbook are appropriate. For those estimating tasks where historical, contractor-specific
data is available, the handbook should be used as a “how-to” guide to develop contractor-
specific tools.

While the tools presented in this handbook have their documented limitations, NCCA
views the handbook in a broader sense as a procedural and analytical framework for
continual software database and methodology improvement.

xx

ACKNOWLEDGMENTS

The ideas, approaches, and conclusions presented in this handbook reflect much more than the
experience and research of the authors. The numerous references throughout the handbook
show the extent to which we have used published research and discussions with knowledgeable
experts who have been involved in software development. It is only through this open exchange
of information that this handbook was made possible, and only through continued conversation
that the handbook can continue to evolve. Therefore, NCCA welcomes and encourages any
and all comments.

The authors are especially grateful to Mr. Lowell Blagmon for his contributions to Section 8 -
Schedule Analysis and Mr. Rick Collins for his invaluable guidance and assistance. Thanks
are also extended to the following NCCA employees for reading and editing the handbook: Mr.
Jack Smuck, Mr. Brian Flynn, Mr. Stephen Gross, Ms. Nancy St. Louis, Ms. Karen Richey, Mr.
John Georges, LCDR Katherine Kinnavy, and Mr. Jeff Cherwonik. The authors also appreciate
the review conducted by Mr. Gene Waller of Technomics, Inc..

INTRODUCTION

1.1 HANDBOOK INTRODUCTION

Although a multitude of software development estimating tools currently exist, software
development is still one of the most difficult areas to estimate. The Naval Center for Cost
Analysis (NCCA) contends that only by targeting specific contractors and their associated
development processes (including personnel, tools and methodologies) can cost estimators
expect to decrease the large variances associated with software development estimates. A
detailed, contractor-specific database and associated contractor-specific software development
estimating tools do not currently exist within the Navy. This handbook is not intended to fill this
void, but to provide the analyst with a set of standard instructions and tools to utilize when
additional contractor-specific, analogous data is unavailable. These tools will allow the analyst
to develop a comprehensive, defensible and reproducible software development estimate, with
the associated statistical variances defined. Although this document is intended for novice
software cost estimators, it is not tutorial in nature. However, through close attention to the
assumptions and analytical approaches underlying the standard software development
estimating tool set, the analyst should acquire many of the skills necessary to develop or
analyze other software development estimating approaches. Additionally, the specific strengths
and weaknesses of the recommended approaches, including examples and possible follow-on
research efforts, are discussed to facilitate usage of, and modifications and improvements to,
the standard tools.

NCCA recommends a five-step software development cost estimating process, as illustrated in
Figure 1-1:

DEFINE THE PROBLEM

DEVELOP EFFORT
ESTIMATE (MAN-MONTHS)

 PERFORM EQUIVALENT
CODE CONVERSION

DEVELOP SCHEDULE
ESTIMATE (MONTHS)

 PERFORM EFFORT-to-COST ($)
CONVERSION

PERFORM
RISK ANALYSIS

Figure 1-1: Software Development Estimating Process

1

Step 1

Step 2

Step 3

Step 4

Step 5

Section 1 - Introduction

1 - 2

For each major step of the process, this document discusses: 1) the underlying database, 2)
the normalization efforts performed, 3) the standard regressions or factors developed, (with their
associated strengths and weaknesses), and 4) the final recommended methodology, including
detailed instructions which address when and how to apply the tools. Proper use of these tools
requires the analyst to understand the weaknesses in the underlying database in order to
quantify, rectify, or at a minimum, qualify the impacts of these weaknesses for the program
being estimated. As mentioned earlier, these standard tools are to be used only when
additional, contractor-specific, analogous data is unavailable. This document discusses, in
detail, why contractor-specific data is essential to develop the most accurate software
development estimate; and in the event that contractor-specific data is obtained, this document
will serve as a detailed guide to the processes required to normalize and analyze this data and
the resulting tools.

1.2 HANDBOOK OVERVIEW

Including the introduction (Section 1), this document consists of 11 sections.

Section 2 of this document addresses the first step of the software development estimating
process: Defining the Problem. It provides an overview of the standard data definition forms
available to gather the essential technical and programmatic data required to develop a
software development estimate.

Sections 3 through 7 discuss the second step of the software development estimating
process: Effort Analysis. Specifically, Section 3 - Software Database, addresses the data
collection methods utilized to develop the NCCA Raw Software Effort Database, including the
source databases, procedures and schema. Additionally, because technology is evolving so
quickly in the software development area, this section references several separate issue papers
that should be taken into consideration when developing a software estimate. These issues,
such as the impact of tailoring military standards (MIL-STDs) or the use of Commercial-Off-The-
Shelf (COTS) software, are not represented in the NCCA Raw Software Effort Database and
may ultimately affect the effort estimate. Where data allowed, quantitative adjustments are
provided to account for these types of advancements. Otherwise, positions based on the
qualitative assessment of various experts’ opinions are provided and recommended to be used
until supporting quantitative data becomes available. Section 4 - Effort Analysis: Significant
Drivers documents the analytical procedures followed to determine software development
productivity drivers. NCCA’s general goal was to identify the significant, objective, software
development metrics which most affect productivity. Due to the intended audience, NCCA
wanted to eliminate as much subjectivity as possible when developing a software estimate. A
discussion concerning equivalent code conversion techniques is also provided. Section 5 -
Effort Analysis: Normalized Regressions reviews the procedures followed to develop the
final normalized database and the analytical approach utilized to develop the standard
normalized set of software development estimating tools. An evaluation of the resulting tools on
a validation database is also provided. Section 6 - Effort Analysis: Non-Normalized
Productivity Factors provides the analyst with a standard set of tools in the event the program
being estimated does not meet NCCA’s normalization criteria.

Section 1 - Introduction

1 - 3

Section 7 - Effort Analysis: Overall Process presents the overall software development effort
estimating process and an example of the resulting statistics when applied to a sample
population of programs.

Section 8 - Schedule Analysis addresses the third step of the software development
estimating process: Schedule Estimation. This section documents the schedule databases
and associated ground rules and assumptions for both the raw and normalized databases, and
details the analytical approach followed to derive top-level factors and schedule estimating
relationships, along with the tools’ associated strengths and weaknesses.

Section 9 - Labor Rate Analysis addresses the fourth step of the software development
estimating process: Effort-to-Cost Conversion (Man-Year Rate) Estimation. This section
documents the labor rate databases and associated ground rules and assumptions for both the
raw and normalized databases, as well as details the analytical approach followed to derive top-
level factors and cost (man-year rate) estimating relationships, along with their associated
strengths and weaknesses. Guidance is also provided on adjustment techniques to best reflect
the current business base and acquisition strategy of the corporation.

Section 10 - Risk Analysis discusses the fifth step of the software development estimating
process. It provides NCCA’s recommended approach for evaluating the risk associated with the
software development effort, including source lines of code (SLOC) growth and estimated
percent reused changes.

Section 11 - Conclusions provides final remarks for the Phase One Handbook.

Finally, a list of references, acronyms and supporting Appendices are provided.

DEFINING THE PROBLEM

There are two basic types of information required to develop a quality software development
estimate: 1) technical and programmatic information for the program being estimated and 2)
technical and programmatic information for the analogous historical programs used to develop
the estimate.

Based on NCCA’s analysis, a software development estimate requires, at a minimum, the
following information for the program being estimated:

• Some measure of the work to be performed with associated units (i.e., SLOC counts, words,

function points, etc.)

• If SLOC is utilized as the unit of measure, the associated counting convention (i.e., physical,

physical with comments, logical, etc.)

• The programming language utilized (at a minimum Assembly versus Higher Order

Languages (HOL (e.g., FORTRAN, Jovial, CMS-2, etc.)) versus Fourth Generation
Languages (4GL))

• The condition of the code (i.e., percent new, percent reused (modified, verbatim, translated,

rehosted, etc..)), with associated definitions

• The phases of the software development life cycle to be estimated (e.g., System Design

Review (SDR) through Formal Qualification Test (FQT))

• The development mode (at a minimum, embedded versus non-embedded)

• If known, the name of the contractor responsible for developing the program. As discussed

previously, NCCA contends that contractor-specific data holds the greatest possibility for
increasing the accuracy and decreasing the variance associated with the software
estimating tools developed.

Sections 3 through 6 provide definitions of the variables cited above, and discuss in detail how
NCCA arrived at this list and the importance of obtaining each of the required inputs. NCCA
has developed a standard NCCA Software Program Definition Form with an associated Data
Dictionary to facilitate the collection of the information cited above. See Appendix A for these
documents. The NCCA Software Program Definition Form requests information in addition to
that cited in the list above to support future improvements to this handbook. Since all of the
information requested affects the projected productivity of the development effort, it is crucial
that the information gathered be as specific as possible.

2

Section 2 – Defining the Problem

2-2

In addition to the aforementioned information on the program being estimated, the analyst must
compile the same information for the analogous contractor-specific historical programs that will
be used to develop the cost estimating methodology. Additionally, the actual effort, schedule,
and cost (price) to develop the software, by software development phase if possible, should be
obtained. NCCA has also developed a standard NCCA Historical Software Data Request
Form with an associated Data Dictionary to standardize the collection of historical data. See
Appendix A. It is with this information that the most accurate productivity, schedule, and labor
rate metrics can be developed. If the Request for Proposal (RFP) was developed correctly, the
Software Development Plan (SDP) Contract Data Requirements List (CDRL) is an excellent
source of historical data. The SDP typically requires a list of previously delivered programs
developed by the contractor, with the associated technical and programmatic data. If, however,
the SDP is not available, this type of information can and should still be obtained from the
contractor in whatever form is available. When collecting historical data, the analyst must
ensure that the information is for completed programs. Often, projections of on-going efforts are
mixed in with actual completed programs. Since software development is continuously
evolving, the analyst should always try to obtain the most recent data available. Thus, the
regressions and factors presented within this document can be continuously updated to capture
the latest technological trends.

Finally, NCCA has documented the procedures the in-house analyst should follow when
entering new data into the NCCA Raw Software Effort Database. Appendix A also includes the
NCCA Historical Software Data Request Form’s Mapping Procedures.

SOFTWARE DATABASE

3.1 INTRODUCTION

This section of the handbook documents the source databases, procedures and schema used
to create the NCCA Raw Software Effort Database. The NCCA Raw Software Effort Database
(hereafter called the NCCA Raw Database) is a conglomeration of several historical software
databases from both internal NCCA and external sources. The NCCA Raw Database drew
upon data currently available to NCCA and was designed for a top-level software cost analysis.
NCCA defines a Phase One analysis as one that relies on basic objective inputs. It uses either
top-level productivity factors or estimating relationships (equations derived using least squares
regression) to estimate the effort and schedule of a software program.

The NCCA Raw Database contains a total of 457 records from many different Department of
Defense and National Aeronautics and Space Administration (NASA) software development
programs at both the program and CSCI-level. There is a variety of information provided,
including effort, schedule, and technical information, such as programming language, mode of
development, size, and operating platform. The database has 73 descriptive fields; however,
not all fields are complete for every record. At a minimum, effort and size are provided for every
record. Many of the source databases NCCA used in this analysis contained more than 73
fields. Some of these fields were unique to a particular database. For instance, the Space and
Missile Center (SMC) Database was the only database that had fields containing each software
development review date. The various types of classification fields included in the database
allow the analyst to filter data into subsets that are analogous to the program being estimated.
The fields NCCA chose to include in the NCCA Raw Database have the most potential for use
in a top-level software cost estimate.

The programs were developed from the early 1970s through the early 1990s. All major
programming languages, including C, FORTRAN, Pascal, Ada, Assembly, JOVIAL, CMS-2, and
COBOL, are represented in the NCCA Raw Database. The size of the programs range from 2.2
to 1,800 KSLOC, while the individual CSCIs range from 0.4 to 595 KSLOC. Since the program
and contractor names were unknown in most of the source databases, NCCA screened the
entire raw database to ensure that data points were not duplicated.

The following subsections will describe the NCCA Raw Database in detail:

• Ground Rules and Assumptions
• Data Field Definitions
• Raw Data
• Results
• Conclusions
• Future Efforts

3

Section 3 - Software Database

3 - 2

3.2 GROUND RULES AND ASSUMPTIONS

This subsection discusses the general assumptions and ground rules followed to create the
NCCA Raw Database. It is divided into three parts: Assumptions for Sizing, Assumptions for
Scope of Effort and Distribution, and Other Assumptions. Some assumptions are specific to a
particular source database and are described in the Raw Data section.

3.2.1 ASSUMPTIONS FOR SIZING

Counting SLOC can be a source of great ambiguity. It is highly probable that different people
can view the same source code and use the same definition for SLOC, but count the source
code very differently. The first set of assumptions addresses this problem.

• NCCA assumed the definition of SLOC was consistent throughout a particular source
database. In other words, if the author of the database stated that SLOC were
measured using Delivered Source Instructions (DSI), then NCCA assumed that all the
data points within that database were, in fact, expressed as DSI.

It is important to know how the SLOC were counted so that any productivity or effort estimating
relationships developed will be valid. There are two main categories of code counting
conventions: physical and logical. Counting physical SLOC is accomplished by tallying the
number of carriage returns in the source document. Logical SLOC are counted by tallying
logical units (for example, an IF-THEN-ELSE statement is considered one logical unit).

The impact of counting convention cannot be overstated. An Institute for Defense Analyses
(IDA) study of four experimental FORTRAN programs, reference [1], found that on average,
physical SLOC produce a code size that is about 20 percent higher than counting the same
code using a logical SLOC definition. NASA's Software Engineering Laboratory (SEL),
reference [2], also found wide differences between physical and logical code counts. They
found that a FORTRAN program’s ratio of physical lines to logical statements ranged from 2.5 to
5 due to variations in the number of comments. Likewise, reference [2] also stated that Ada
programs exhibited a similar ratio of 2.5 to 6 physical lines per logical statement.

Counting logical SLOC can be difficult since the definition of a logical unit is open to
interpretation. In Ada, counting logical SLOC is easier because non-commented statements are
terminated with a semicolon. Figure 3-1 shows an example of Ada source code. The right
column is the actual source code. The left column shows two possible ways to count the SLOC.
“1 P” indicates one physical line, “1 L” indicates one logical line, “1 C” means one comment line,
and “1 B” means one blank line. The “ï” character represents a carriage return.

In the following example, there are seven physical SLOC (five are non-comment and non-blank)
and four logical SLOC (and terminal semicolons).5 This counting result is subject to
interpretation, and therefore, different results are possible. Reference [3] provides a more
thorough discussion about counting SLOC. It also provides a sample checklist to help better
define how SLOC are counted.

5The embedded semicolons in the third statement's literal string are not counted.

Section 3 - Software Database

3 - 3

Type Source Line

1 P, 1 L textio.putline (“Is this a SLOC?”); ï
1 P if (x=5) ï
1 P then textio.putline (“How about this; one;?”) ï
1 P, 1 L end if; ï
1 P, 2 L x:=1; y:=2; ï
1 P, 1 B ï
1 P, 1 C -- This is a comment ï

P = Physical, L = Logical, B = Blank, C = Comment

Figure 3-1: Source Code Example

• Due to the subjectivity involved, NCCA made no attempt to define or map the source

database’s SLOC counting convention into a physical or logical category unless a
SLOC definition was provided in the source database’s documentation. Some of the
embedded programs included both the terminal semicolon count and the physical
SLOC count (non-comment, non-blank). When both counts were available, NCCA
used the terminal semicolon count.

Not only is knowing the amount of source code necessary, but knowing the “condition” of the
code is also important. NCCA uses the term condition to describe the composition of the source
code (i.e., %new and %reused).

• NCCA made no assumption about the amount of new SLOC a program or CSCI

contained. In other words, when the source database did not provide this level of
detail, only the total SLOC was shown in the NCCA Raw Database.

The amount of higher order language (HOL) a program or CSCI contains is also an important
factor to consider.

• All programming languages, except Assembly language, are defined as HOLs. If a

program contained both Assembly and HOL, but the code condition (i.e., %new and
%reused) for each language was unknown, then NCCA assumed the distribution for
both HOL and Assembly code was the same as that for the total program.

For example, the non-shaded portions of Table 3-1 show how the source databases would
typically provide their SLOC information. The numbers in the shaded boxes were not provided
by the source databases, but were derived using the above assumption.

 SIZE (KSLOC) NEW KSLOC REUSED KSLOC
Total Program 1000 500 500
HOL Portion 800 400 400
Assembly Portion 200 100 100

Table 3-1: Allocation of New HOL and New Assembly SLOC

Section 3 - Software Database

3 - 4

This assumption may not be accurate for some data points. It is possible that an even greater
percentage of the new SLOC in the above example is in HOL.6 Analysts should ask for the new
and reused SLOC by language (i.e., try to avoid having to derive values).

Total SLOC for each program in the NCCA Raw Database represents the sum of their
sub-components (i.e., new, modified, verbatim, etc.). In the raw database, NCCA made
no effort to convert the raw sum into equivalent new source lines of code (ESLOC).7

3.2.2 ASSUMPTIONS FOR SCOPE AND DISTRIBUTION OF EFFORT

When using historical software effort data, it is important to consider the level of requirements
under which the software was developed. A major program may have several software
development efforts spanning different acquisition phases. For example, typical acquisition
strategies for new aircraft programs require a “fly-off”8 between at least two competing
contractors. This typically requires development of prototypes and associated software during
the Program Definition and Risk Reduction (PDRR) Phase, formerly known as the
Demonstration and Validation (DEM/VAL) Phase. After a competitive selection process, one
contractor's design is chosen for further development. Final development takes place during
the Engineering and Manufacturing Development (EMD) Phase, where software development
occurs once again for the deployable software. The contractor may be able to reuse code from
the PDRR Phase.

The non-deployable software developed in the above example for the PDRR Phase may not
undergo the same level of documentation, testing, or review as software developed in the EMD
Phase for deployment. As a result, using historical PDRR data points to estimate effort in the
EMD Phase may not be appropriate without further adjustment.

• Historical software development programs in the NCCA Raw Database represent

deployed software developed in the EMD Phase. Additionally, all data included in the
NCCA Raw Database came from completed efforts unless otherwise indicated in the
Note Fields (#69 through #71) of the database.

Another potentially related software problem is that some of the effort may have been performed
in a prior acquisition development phase. For example, it is possible that one of the software
development phases, Software Requirements Analysis, took place during PDRR. This section
will discuss the software development phases in greater detail later. If this occurred, and if
separate contracts were signed for the PDRR and EMD Phases, then the total cost and effort

6 DoD program managers are strongly encouraged to minimize the new development of software in Assembly language. Assembly
code is a low -level language that has processor specific commands and conventions. While very powerful, Assembly language is
difficult to rehost on new or different hardware platforms (see page 3-9 for a discussion of rehosting), and it is harder to maintain.
Analysts should question the accuracy of any modern data point that displays a significant amount of new Assembly .
7 The process (described by Boehm [5]) of converting raw SLOC into ESLOC relies on an assumed distribution of effort. (Reference
[5] uses the 40/30/30 rule: 40 percent design modified, 30 percent code modified, 30 percent of integration required for modified
software.) This distribution is not supported by underlying data, therefore, the analyst cannot develop an uncertainty range around
the converted SLOC. NCCA develops “default” conversion factors in Sections 4, 5 and 6. These factors will have a variance
associated with them to enable the analyst to perform a more accurate risk/uncertainty analysis. As more data becomes available,
the conversion factors will be updated.
8 A competitive development between two or more contractors which produces prototypes. This culminates in a “fly-off” where each
competing design is demonstrated to the user (i.e., an actual flight demonstration).

Section 3 - Software Database

3 - 5

for the deployed software would be under-reported unless a portion of the PDRR costs were
added to the EMD contract. Figure 3-2 depicts the problem.

How Much Does the Software Really Cost?
Reqt’s
Effort Remaining Software Development

EMD

Total Software Effort

PDRR

Figure 3-2: Example of Software Development Across the Acquisition Phases

• Hence, NCCA assumed all software development phases from the SDR through the

FQT occurred in the EMD Phase. Furthermore, review dates are assumed to be
completion dates. NCCA made no assumption about what part of the month a
program started or finished.

3.2.3 OTHER ASSUMPTIONS

Simulation code is typically developed to test the operational software and is not usually
delivered to the user. Therefore, it does not usually undergo the same level of rigor or
documentation as operational software.

• Hence, all simulation systems were classified as ground-support systems, which are

typically low in complexity. This assumes that, despite the particular mission of the
software, simulation systems are inherently similar and do not suffer the same type of
physical constraints as actual mission systems.

3.3 DATA FIELD DEFINITIONS

A record in the NCCA Raw Database contains 73 data fields. These fields describe various
attributes of a software program. However, not all fields are complete for each record. Most
records contain the following general information:

 1) Program name, if known
 2) Platform
 3) Program- or CSCI-level
 4) Size (SLOC)
 5) Programming language
 6) Effort expended (man-months)
 7) Duration
 8) Acquisition phase
 9) SLOC counting convention

Section 3 - Software Database

3 - 6

10) Software development phases included in the reported effort
11) Contractor name, if known
12) Notes

These 12 fields were commonly used in all of the databases that NCCA referenced and were
more objective than many other fields available. In contrast, some of the fields in the NCCA
Raw Database were specific to the original source database. For example, the MITRE Non-Ada
Database separated the development effort by phase, while the other source databases
provided total effort only.

Below is a list of field descriptions. More detailed definitions of the key fields will be provided in
Section 4 - Effort Analysis: Significant Drivers. The terms in bold are field names as they
appear in the NCCA Raw Database. The first 13 fields provide programmatic and classification
information:

 1) Rec: The key code name NCCA assigned to the program or CSCI.

 2) Program: The name (if known) of the overall program (e.g., BSY-1, SLQ-32, etc.).
This information is business sensitive and is withheld from the sanitized version of the
NCCA Raw Database. See Appendix B for this information.

 3) Program CSCI: The name (if known) of the CSCI in the program. “Total” is the sum
of all the CSCIs within a program. This information is business sensitive and is withheld
from the sanitized version of the NCCA Raw Database. See Appendix B for this information.

 4) Platform: The major target environment of the operating software, including the
following designations:

Ship: Ship or submarine-based system

Ground: Ground-based system, including simulation systems

Air: Manned or unmanned aircraft or missile system

UNMNDSP: Unmanned space system

 5) CSCI?: This field contains “Y” if the record is CSCI-level and “N” if it is program-
level. No data was collected below the CSCI-level (i.e., at the Computer Software Component
(CSC) or Computer Software Unit (CSU) - level).

 6) SW Class: A classification of the software’s top-level function. Software is typically
classified into three categories: application, support, and system. System code is the most
difficult to develop, while support code is the least difficult. Refer to Section 4 - Effort Analysis:
Significant Drivers for further definitions and examples.

7) Status: A classification of the software’s mission as it pertained to the end user.

Section 3 - Software Database

3 - 7

The status classifications were operational and non-operational as defined below.9

OP: Operational software (i.e., actual mission software that was delivered to the user).

NOP: Non-operational software, as follows:

PGS: The program generation support software used to develop the operational
software, but not necessarily delivered to the user.

SIM/STIM: The software developed to test operational software, but not
necessarily delivered to the user (e.g., software utilized to generate artificial
sonar signatures to test a sonar system).

 8) Mission: The specific function the software performs. For a program with multiple
CSCIs, this field contains the same value for each CSCI. The NCCA Raw Database includes
the following missions:

C3: Command, control, and communications (C3). Information systems that gather,
control, process, and distribute strategic, tactical, intelligence, and message data (e.g.,
MILSTAR and GPS).

RADAR: Systems that use microwave energy to detect, determine range, and track
ground or airborne targets as defined in reference [4]. Includes all radar on ships,
aircraft, and ground systems (e.g., SPY-1).

SIM: Simulation systems (e.g., F-18 trainers).

EW: Electronic warfare systems, such as jamming and countermeasure systems (e.g.,
ASPJ).

SONAR: Ship systems, similar to radar, which use sound waves instead of microwaves
(e.g., BQQ-5).

ASW: Anti-submarine warfare systems. A collection of major sub-systems that detect
and/or neutralize enemy submarines (e.g., BSY-2).

TORP: Air-, ship-, or submarine-launched weapon systems that move through water to
destroy ships or submarines (e.g., MK48).

MINE: Explosive devices that deter both personnel and enemy vehicles from entering a
protected area. Mine systems include mine countermeasures (e.g., SLQ-32).

MISSILE: Ground-, sea- or air-launched, self-powered weapon system (e.g., AIM-9X
and Standard Missile).

9None of the source databases had a field to track the operational status of the code, but NCCA plans to collect this type of
information for future analysis. NCCA attempted to classify the operational status of the SLOC in the current version of the
database, but subsequent analysis of the data revealed either non-significant or illogical relationships. See Section 4 – Effort
Analysis: Significant Drivers for more on this analysis. Therefore, NCCA will clear this field in later versions of the database (i.e., all
records in the database will have a blank Field #7) until more accurate data is obtained.

Section 3 - Software Database

3 - 8

MIS: Management Information Systems. Non-weapon system, such as financial
systems, inventory systems, decision support systems, etc. (e.g., NALCOMIS and
JCALS).

 9) Major Function: Some data sources supplied more information on the specific
function of the CSCI (e.g., display or message processing or executive control). Unlike the
Mission field, this field may vary at the CSCI-level within the same program.

 10) Lang1: The name of the primary (greater than 50 percent of the total SLOC)
programming language used to code the software.

 11) Lang2: The name of the programming language that constitutes the next highest
percentage of the total SLOC.

 12) CSCI Count: For program-level data, the total number of CSCIs in the program.
For CSCI-level data, the count equals one. For program-level data the count can also equal
one (i.e., the program consisted of only one CSCI).

 13) HOL: The percentage of total SLOC written in an HOL. If this field contained a
value, it was between zero and one.

The next seven fields refer to software size. Sizing within the NCCA Raw Database was
expressed in SLOC. Documented sources seemed to follow Boehm's counting convention [5]
of including only delivered code.10 Fields #15 through #19, expressed as percentages, further
defined total SLOC. If they contained a value, it was greater than or equal to zero, but less than
or equal to one.

 14) Total: This is the total raw sum of new and reused (modified, verbatim, rehosted,
translated) SLOC.

 15) New: The percentage of the total SLOC that is new. New was defined as “freshly
made and unused.”

 16) Mod: The percentage of the total SLOC that required some amount of redesigning,
recoding, and retesting. The effort to modify code is usually less than the effort to create new
code.

 17) Verbatim: The percentage of the total SLOC that was used “as-is” with no
redesigning or recoding. Note that this code may or may not need retesting at the CSU-level.

 18) Rehosted: The percentage of the total SLOC originally written for one source
architecture, but moved to another (sometimes different) architecture. For example, taking
Lotus 1-2-3 source code from the Intel 486 platform and compiling it to run on the Motorola
68000 platform is a rehosting effort. A second interpretation of rehosted code is transferring
code from one operating system to another. An example of this type of rehosting effort is to

10Non-delivered code includes “deleted” SLOC. This count is important, but is usually not captured. Deleted code indicates how
much rework is performed if the program is entirely new. SLOC may also be deleted when programs are reused or “re-engineered.”
While deleting code in and of itself probably is not too difficult, there are times when problems occur, resulting in additional and
unexpected effort.

Section 3 - Software Database

3 - 9

convert Lotus 1-2-3 source code written for Disk Operating System (DOS) and operate it under
the OS/2 operating system. Consequently, it is possible to find software programs where the
rehosted code not only represents changing architecture, but also represents changing
operating systems.11

 19) Translated: The percentage of the total SLOC that was converted from one source
language to another. Converting a program from C to Ada is an example of translated code.
Typically, using an automatic translator which converts one programming language to another
can save much effort.

 20) Comments: The total number of comment SLOC.

Fields #21 and #22 (Name and Count) identify how the SLOC were counted:

 21) Name: The source database classification for SLOC.

DSI: Delivered Source Instructions. As discussed in reference [5], DSI include
delivered executable SLOC, data declarations, job control language (JCL) statements,
and INCLUDE files (counted once). DSI exclude comments, prefaces, file boundary
statements, COTS software that is not modified, non-delivered support software, and
non-delivered test software. Note: NCCA defined DSI as logical SLOC. See reference
[3].

CR: Carriage Return. All lines are counted regardless of programming style, including
comments and blanks. May or may not include non-deliverable test software. NCCA
classified this as physical SLOC. See references [1] and [2].

TSC: Terminal semicolons.12 This terminology is usually associated with Ada and C++
programs. Includes all statements that terminate with a semicolon. NCCA classified this
as logical SLOC. (See reference [1].) Counting with terminal semicolons is the more
objective method for counting logical SLOC.

SLOC: Software Architecture Sizing & Estimating Tool (SASET) defines SLOC as
source lines of code that “consist of all executable statements, plus inputs/outputs,
format statements, data declaration statements, deliverable JCL statements, and
procedure-oriented language statements. SLOC does not include statement
continuations, database contents, CONTINUE statements, or program comments” [6].

SMC [7] defined SLOC as “. . . a single instruction, not necessarily a physical line. Comments
are not counted. As an example in Ada, source SLOC are counted by the number of [terminal]
semicolons” and include the following statements:

11Legacy code that is written in Assembly language is difficult to rehost.
12The terminal semicolon count and other logical counting schemes are preferred because they produce a size parameter that is
less sensitive to coding style. Since programming styles influence physical SLOC counting conventions, programmer productivity
could be artificially high (when productivity is defined as physical SLOC per hour) merely because compound constructs are broken
into separate lines. For instance, if an IF-THEN statement is split into more than one line, it would count for more than one physical
SLOC. In Ada, executable and declarative statements are terminated with a semicolon. This means that in the previous example, a
multi-line IF-THEN statement counts as one statement. Care must still be taken to ensure that if an automated code counter is
used, it does not count semicolons embedded in comments or strings. See reference [3] for a discussion of the issues surrounding
counting SLOC.

Section 3 - Software Database

3 - 10

Control (DO While, DO Until, GOTO)
Mathematical (i=a**b=c)
Conditional (IF-THEN-ELSE)
Deliverable JCL statements
Data declaration statements
Data typing statements and EQUIVALENCE statements
Input/Output format statements

but exclude

Comments
Blank lines
BEGIN statements from BEGIN-END pairs
Non-delivered programmer DEBUG statements
Continuations of format statements
Machine- or library-generated data statements

Even though the SASET and SMC definitions of SLOC were slightly different, NCCA classified
both of these as logical SLOC. The Software Engineering Institute (SEI) [3] defined SLOC as
physical SLOC. Other source databases used the generic term SLOC, but did not provide
definitions.

 22) Count: Based on the previous definitions, this field contains NCCA's mapping of
the source database’s SLOC classification (Field #21).

CP: Commented Physical SLOC

P: Non-commented Physical SLOC

L: Non-commented Logical SLOC

?: Not enough information for an assessment

The next seven fields provide development and process information:

23) Mode: The development environment of the software program. Mode designations
are embedded, semi-detached, or organic.13 Refer to Section 4 - Effort Analysis: Significant
Drivers for further details.

 24) Period: The acquisition phase of contract performance. This field contains either
CED (Concept Exploration and Definition), PDRR (previously known as DEM/VAL), EMD or a
blank, if unknown. NCCA has not discovered any data points that span more than one
acquisition phase.

13 The MITRE Non-Ada Database [6] also included a fourth mode called firmware (FW). The Mitre Non-Ada Database (DB #1), the
Mitre Ada Database (DB #2), the REVIC Recalibration Database (DB #7), and certain programs from the Navy Internal Database
(DB #5) provided the development mode. For the remaining databases, NCCA subjectively mapped programs into the applicable
mode designations, if enough information was provided. For an example, refer to the SMC software database discussion on
page 3-19.

Section 3 - Software Database

3 - 11

 25) MM.eq.152: Contains either “Y” or “N.” If “Y” appears in this field, then either the
source database recorded the effort in hours, used a 152-hour man-month, or used a different
hour per man-month value and NCCA normalized the reported effort to a 152-hour man-
month.14 If “N” appears in this field, the source database did not provide the hours per man-
month.

 26) Hrs/MM: The actual hours per man-month recorded by the source database.
Values significantly less than 152 hours per man-month may indicate that the schedule was
extended and values significantly greater than 152 hours per man-month may be an indication
that the schedule was compressed. Most schedule estimation models are based upon a
historical database of actual schedule and actual effort. When the hours per man-month are
increased, the corresponding schedule decreases. The values in this field ranged from 150 to
176 hours per man-month.

 27) Method: The software development method (process) followed. The types of
methods are waterfall, incremental, spiral, and evolutionary. Refer to the NCCA Software
Glossary and Primer or reference [5] for further details.

 28) Peak: The highest number of persons used during the development effort at one
time.

 29) Average: The average size of the program staff (number of persons) during
development. This was calculated by dividing the total effort by the total elapsed development
time. The values for effort and time should be of the same scope (i.e., if the effort scope is SDR
through FQT, then schedule scope should also be SDR through FQT).

The next seven fields describe the amount and scope of effort:

 30) TotalMM: The total effort (man-months) expended to develop the software. If the
source database provided a breakdown, total effort was decomposed into the following software
development phases:

 31) Reqmnts: The total effort expended during the requirements phase. Activities
include a basic draft of the software documentation, including the SDP, Software Requirements
Specification (SRS), and Software Test Plan (STP). The Interface Control Document is also
finalized during this phase. Most of the source databases either did not include this effort or did
not state that the effort was included elsewhere. Requirements are sometimes generated
during the PDRR Phase of the program, and therefore, may not be captured on an EMD
contract.

 32) EDT (Design Total): The total effort expended in the design phase. This is the
sum of Fields #33 and #34 (Preliminary and Detailed Design Effort), as defined below:

 33) EPD (Preliminary Design): All effort expended between the Software Specification
Review (SSR) and Preliminary Design Review (PDR). Activities include finalizing the system

14For example, if the source database reported total effort as 100 man-months and stated that 1 man-month = 173 hours, then
NCCA re-calculated the effort and recorded it as 173/152 x 100 = 114 man-months. Most of the source databases recorded their
effort using 152 hours per man-month; therefore, NCCA normalized man-hours to this standard.

Section 3 - Software Database

3 - 12

requirements specifications (A spec), finalizing the CSCI test plans, and finalizing the database
requirements. Functional design specifications for each CSCI, including identification, sizing,
and language, are generated.

 34) EDD (Detailed Design): All effort expended between the PDR and the Critical
Design Review (CDR). Activities include preliminary test procedures, detailed flow charts for
each CSCI, database specifications, and a final requirements traceability matrix.

 35) ECUT (Code and Unit Test): All effort expended from the CDR to the Test
Readiness Review (TRR), including testing of individual software units and informal testing.

 36) EIT (Integration and Test): The effort to successively integrate and test all CSCs.
This includes the FQT of each CSCI, but does not cover the CSCI-to-CSCI integration nor the
integration and testing of the hardware with the software system [8].

In addition to providing the amount of effort by phase, the NCCA Raw Database has nine fields
describing what is and is not included in the reported effort. These nine binary fields contain a
zero, one, or blank (if unknown). These fields used ones and zeros so that they could be used
as dummy variables in later regression analyses.

 37) REQ: Did the reported total effort include effort for the Software Requirements
Phase? Yes = 1, No = 0, Blank cell = unknown.

 38) PD: Did the reported total effort include effort for the Preliminary Design Phase?
Yes = 1, No = 0, Blank cell = unknown.

 39) DD: Did the reported total effort include effort from the Detailed Design Phase?
Yes = 1, No = 0, Blank cell = unknown.

 40) CUT: Did the reported total effort include effort for the Code and Unit Test Phase?
Yes = 1, No = 0, Blank cell = unknown.

 41) CSC TST: Did the reported total effort include effort for the CSC Testing Phase?
Yes = 1, No = 0, Blank cell = unknown.

42) CSCI TST: Did the reported total effort include effort for the CSCI Testing Phase?
Yes = 1, No = 0, Blank cell = unknown.

 43) SIT: Did the reported total effort include effort for the System Integration and Test
Phase? Yes = 1, No = 0, Blank cell = unknown.

 44) OTE: Did the reported total effort include effort for the Operational Test and
Evaluation Phase? Yes = 1, No = 0, Blank cell = unknown.

 45) Other: Was another phase other than those mentioned above included? Yes = 1,
No = 0, Blank cell = unknown.

The next three fields specify the program’s software schedule. The detailed reviews are defined
in Fields #54 through #64.

Section 3 - Software Database

3 - 13

 46) Start: The completion date of the SDR. If this date is unknown, the field is blank.

 47) Finish: The completion date of the FQT. If this date is unknown, the field is blank.

 48) Total Months: The elapsed time from start to finish. Units are calendar months. If
either the start or finish were unknown, then this field was blank. There are some programs that
did not have start or finish dates, but provided the elapsed time. This elapsed time was
included only if the documentation indicated that the start and finish were defined as SDR and
FQT, respectively.

The next five fields capture elapsed times for specific phases in the software development
effort. Elapsed time is in calendar months.

 49) TTD: The total elapsed time for preliminary and detailed design combined. This
field is the sum of Fields #50 and #51 below.

 50) TPD: The elapsed time for the Preliminary Design Phase.

 51) TDD: The elapsed time for the Detailed Design Phase.

 52) TCUT: The elapsed time for the Code and Unit Test Phase.

 53) TIT: The elapsed time for the Software Integration and Test Phase, but does not
include the System Integration and Test Phase.

The next eleven fields, as shown in Figure 3-3 and defined below, provide completion dates for
the various software reviews. These reviews (and their definitions) come from DoD-STD-
2167A. The adoption of MIL-STD-498, J-STD-016, ISO-12207 may pose trouble for collecting
and analyzing this type of data in the future. MIL-STD-498 shifts the focus from “formal” reviews
to “informal” reviews. Thus, many of the following reviews may not occur:

54) SRR: System Requirements Review provides insight into the developer’s plan for
the system configuration.

55) SDR: System Design Review provides insight into the overall system requirements
as a basis for establishing the system specification’s functional baseline.

 56) SSR: Software Specification Review is a formal review of a CSCI’s requirements
per the software specifications.

 57) PDR: Preliminary Design Review provides insight into the developer’s progress and
the correctness of the software components’ design.

Section 3 - Software Database

3 - 14

 SRR SDR SSR PDR CDR TRR FQT PCA

 SYSTEM SYSTEM SOFTWARE PRELIMINARY DETAILED CODING CSC CSCI SYSTEM TEST & PROD &
PHASES: RQTMTS DESIGN RQTMTS DESIGN DESIGN & CSC INTEG & TESTING INTEG & EVAL DEPLOY

 ANAL TEST TEST TEST

SRR - System Requirements Review

SDR - System Design Review

SSR - Software Specification Review

PDR - Preliminary Design Review

CDR - Critical Design Review

TRR - Test Readiness Review

FQT - Formal Qualification Test

PCA - Physical Configuration Audit
Figure 3-3: Software Development Phases and Reviews

58) CDR: Critical Design Review is a review that determines if the software design

satisfies the requirements of the system and software specifications.

 59) PQT: Preliminary Qualification Test is a phase not recognized in DoD-STD-2167A,
but it was a field identified in one of the source databases. This review occurs after the coding
and CSC testing has been completed.

 60) TRR: Test Readiness Review verifies that the developer has performed their own
testing and has the resources, plans, and procedures to formally demonstrate to the
government that the software works as an entity.

 61) FCA: Functional Configuration Audit is performed by the government to determine
if CSCIs perform in accordance with their respective requirements and interface specifications
by examining the test and reviewing the operational and support documentation.

 62) PCA: Physical Configuration Audit is the formal technical examination of the as-
built software product against its design.

 63) FQT: Formal Qualification Test is the formal testing of the CSCI per the
government approved test plans and procedures to verify that the CSCI fulfills the requirements
of the SRS and to provide the basis for CSCI acceptance by the government.

 64) OTEVAL: Operational Test and Evaluation

More detailed definitions of these reviews can be found in the NCCA Software Glossary.

The next five fields provide programmatic information:

 65) STD: The military standard the software program was required to follow. Possible
values are “2167,” “483/490,” “1521,” “1679,” and “498.” MIL-STD-498 (498) replaced

Section 3 - Software Database

3 - 15

DoD-STD-2167A in 1993; however, the NCCA Raw Database does not yet contain any
programs developed under 498.15

 66) Contractor: The name of the prime contractor performing the software
development. This information is business sensitive and is withheld from the sanitized
version of the NCCA Raw Database. See Appendix B for this information.

 67) Source: The source of information (other published software databases or cost
reports) for each data point in the NCCA Raw Database. This information is business
sensitive and is withheld from the sanitized version of the NCCA Raw Database. See
Appendix B for this information.

 68) DB Code: The code number NCCA assigned to each source database. It is
included in both the raw and the sanitized version of the NCCA Raw Database. The index
maps to the following databases:

1) MITRE Non-Ada Database
2) MITRE Ada Database
3) SMC Database
4) NASA SEL Database
5) Navy Internal Data Sources
6) Silver SASET Calibration Study Database
7) Revised Intermediate Constructive Cost Model (REVIC) Recalibration Study Database
8) IIT Research Institute (IITRI) Report Database

 69) through 71) Notes 1 through 3: These fields inform the analyst of any specific
assumptions or peculiarities about the data point. They also describe potential problems with
the data (e.g., the source did not indicate the hours per man-month associated with the effort).
This information is business sensitive and is withheld from the sanitized version of the
NCCA Raw Database.

Finally, the last two fields are calculations generated by NCCA:

72) Prod1: Productivity expressed as hours per SLOC based on the following formula:

Total MM * 152 Hours/MM Hours/SLOC =
Total SLOC

This field is blank if Field #25 (MM.eq.152) equals “N.”

73) Prod2: Productivity expressed as hours per new SLOC. This metric is important
because new SLOC tend to drive the effort. (See Sections 5 and 6 for a more detailed
explanation)

15NCCA is not currently collecting any software development efforts under commercial standards. However, MIL-STD-498 expired
in 1996, at which time, DoD intended to adopt the International Standards Organization (ISO) standard for software development.
Refer to the NCCA Issue Paper “MIL-STD-498 versus DoD-STD-2167A” for a discussion of this topic.

Section 3 - Software Database

3 - 16

Total MM * 152 Hours/MM Hours/SLOC =
Total SLOC * New SLOC

This field is blank if Field #25 (MM.eq.152) equals “N” or Field #15 (New) is blank or zero.

3.4 RAW DATA

This section describes the data sources, the type of data collected, and any general problems,
comments, and adjustments or normalizations that were made to the raw data before entering it
into the NCCA Raw Database.

Most of the NCCA Raw Database originated from either published reports or externally
developed software databases. NCCA also collected some Navy internal data from previous
Independent Cost Estimates (ICEs) and other analytical efforts. A total of eight source
databases were either used directly or as a reference for clarification:

1) MITRE Non-Ada Database
2) MITRE Ada Database
3) SMC Database
4) NASA SEL Database
5) Navy Internal Data Sources
6) Silver SASET Calibration Study Database
7) REVIC Recalibration Study Database
8) IITRI Report Database

3.4.1 MITRE NON-ADA DATABASE

Published in a 1987 MITRE report [8], this database contained over 110 CSCIs from 26
programs. Nineteen of the 26 programs came from the Air Force Electronic Systems Center
(ESC). Twenty-three of the 26 programs were complete. The CSCI sizes ranged from 0.4 to
492 KDSI, and the program sizes ranged from 8 to 1,113 KDSI. The data originated from
standard cost forms called M-forms. The forms covered five different areas:

1) Program summary
2) Development and target computer
3) Computer Program Configuration Item (CPCI) summary
4) Resource expenditure
5) CPCI function and sizing

Data sources for the MITRE internal and external contractor supplied data included technical
reports, working papers, interviews, PDR and CDR briefing charts, and software requirement
and product specification charts (B5 and C5 system engineering specifications). MITRE
attempted to use multiple sources for each program to verify that the data collected was correct.
Their review resulted in the modification of some of the programs’ initial SLOC counts and Effort
Adjustment Factor16 (EAF) multipliers.

16Special environment variables originally developed in the Constructive Cost Model (COCOMO) [5].

Section 3 - Software Database

3 - 17

The MITRE Non-Ada Database defines Delivered SLOC (DSLOC) as new code plus adapted
DSI. Some of the data points that had adapted DSI included the percent of adapted DSI that
was redesigned, recoded, reintegrated, and retested. The NCCA Raw Database classified any
data point that was zero percent redesigned and recoded, but was reintegrated and retested, as
verbatim SLOC. The remaining adapted DSI (where the percentage of redesign and recoding
were not equal to zero, or any data points that did not provide the percentage of redesign,
recoding, and retesting information) were classified as modified SLOC.

The MITRE Non-Ada Database counted SLOC using Boehm’s DSI definition (see page 3-9).
MITRE also counted and reported the comment SLOC. NCCA included this information in the
NCCA Raw Database in Field #20 (Comments). MITRE’s SLOC were mapped as logical
SLOC.

The programs for which MITRE collected data were written primarily in Assembly, FORTRAN,
or Jovial, and were developed from the 1970s to 1980s. The data collected represents
development efforts following MIL-STD-1521A or MIL-STD-1521B. However, since the
documentation did not specify which programs were developed under 1521A vice 1521B, the
development standard was not entered into the NCCA Raw Database. MIL-STD-1521A did not
define the SSR, but 1521B did.

Effort data in the MITRE Non-Ada Database reflected all direct labor costs to develop software,
including management, designing, programming, testing, and data collection. It did not include
system requirements analysis, implementation (installation, conversion, or training), and
maintenance [8]. All effort was normalized to a 152-hour man-month and spanned SDR through
FQT.

NCCA deleted several of the MITRE Non-Ada data points for the following reasons:

1) Data points #8, #10, #20: Programs were either halted or were incomplete. Program #10

(Peace Shield) was incomplete in the MITRE Non-Ada Database, but was subsequently
captured, when completed, in the SMC Database.

2) Data point #2: Effort was shown for all phases except Code and Unit Test. It was not clear

whether this effort was allocated to the other phases or was not available, hence not
included.

3) Data point #18: Total effort was reported for the entire program, but the CSCIs for the

program did not sum to the program total. This implies that there was a mapping or
allocation problem.

Fields #33 through #36 (EPD, EDD, ECUT, and EIT) were used primarily in the MITRE Non-Ada
Database. The database also captured the COCOMO environment variables and various other
metrics. Due to the subjectivity of these variables, they were not included in the NCCA Raw
Database. Additionally, several of the programs provided effort by development phase. MITRE
provided effort for Preliminary Design, Detailed Design, Code and Unit Test, and Integration and
Test. However, software requirements were not separately identified; thus, NCCA does not
recommend using the MITRE Non-Ada Database for phase-specific effort estimation or for top-
level distribution of effort.

Section 3 - Software Database

3 - 18

Seventy-two data points were collected from the MITRE Non-Ada Database. Overall, there is
enough high quality data to perform a top-level normalized analysis using this database, but
there are disadvantages:

1) The database contains no Ada programs.
2) The programs are old.
3) Some programs use significant amounts of Assembly language.
4) Program and contractor names are unknown in most cases.

3.4.2 MITRE ADA DATABASE

Published in a 1992 MITRE Report [9], this database contained information from 18 Ada
programs with a total of over 50 CSCIs. The database included software data for both weapon
system (e.g., avionics) and MIS applications. CSCI sizes ranged from 0.7 to 228 KDSI, and
programs ranged from 2.3 to 340 KDSI. This database tallied SLOC by counting terminal
semicolons. SLOC were divided into new, modified, and “lifted.” NCCA mapped lifted SLOC
into verbatim SLOC in the NCCA Raw Database.

The reported effort followed the same Boehm definitions [5] and phases that were described in
the MITRE Non-Ada Database, with the exception that the effort in the MITRE Ada Database
covered the period from SSR through FQT. Consequently, software requirements analysis was
not included in the total effort.

The semi-detached programs in the database came from a 1987 study which did not count
semicolons, but instead used Delivered SLOC. A 1.33 DSLOC to one semicolon factor was
used in the study to convert size data given in DSLOC to semicolons. This was one source of
variation (or error) in the database. No information was provided about the variance
surrounding the conversion factor. To avoid introducing subjectivity, NCCA converted the semi-
detached programs to their original SLOC (DSLOC) count and defined the SLOC as physical
SLOC.

The MITRE Ada Database included a field called “PDL Lines.” PDL stands for Program Design
Language. PDL Lines are English-like statements (also referred to as “pseudo-code”) that aid
the software engineer during the Preliminary Design Phase. Some of the programs used Ada
as the PDL. NCCA defined PDL Lines as non-delivered code. Since other programs tracked
only delivered code, PDL Lines were not included in the total SLOC in the NCCA Raw
Database. The MITRE Ada Database Data Input Form clearly asked if PDL Lines were
included or excluded from the total SLOC counts, so accurate mapping was possible. Although
PDL Lines were not included in the NCCA Raw Database, they may be a useful metric in the
future as an indicator of the scope of effort in the design phase.

Thirty data points were captured from the MITRE Ada Database. However, several data points
from the MITRE Ada Database were deleted for the following reasons:

1) Data point #8: Duplicate data point (AFATDS) from another database.

2) Programs “?5” and “?6”: The CSCIs’ names (“ENGLISH,” “FRENCH,” “DICTIONARY”)

imply that they were commercial programs vice defense related efforts.

Section 3 - Software Database

3 - 19

This database was promising because of the number of Ada programs. However, the database
does not capture the Effort Software Requirements Phase (i.e., effort did not start at SDR) and,
therefore, this database is not recommended for estimating the full scope of effort (SDR through
FQT) for software programs. If software requirements analysis does not need to be estimated,
the MITRE Ada Database is useful for top-level non-normalized productivity factors and
regressions. Additionally, schedule estimation with this database would require adjustments,
since schedule was also typically captured from SDR through FQT. Since the effort was
collected starting at the SSR, an entire phase (Software Requirements Analysis) of effort was
missing. The implication is that an analyst would have to either construct regressions to
estimate a full software development schedule using an independent variable that does not
reflect the full software development effort or artificially inflate the effort to reflect the full phasing
required.

3.4.3 AIR FORCE SPACE AND MISSILE SYSTEMS CENTER (SMC)

SOFTWARE DATABASE

The Air Force SMC Software Database is a 2,600 record database maintained and updated by
Management Consulting and Research, Inc. (MCR) under contract to the Air Force SMC. The
data was originally contained in the Space Systems Cost Analysis Group (SSCAG) Software
Database and has since been expanded. The database is in a Windows format that can be
queried and exported to a spreadsheet.

The SMC Database has extensive information for each record and covers program-level down
to CSU-level information. However, many of the records' fields are blank. NCCA extracted as
many well defined data points as possible from this database. A data point was considered well
defined if the following information was available: size, effort, and hours per man-month.

The SMC Database's SLOC were mapped as logical SLOC and included information on both
new and reused SLOC. In the SMC Database, reused code may have contained some
information about the percent of code that was redesigned, modified, or retested. Similar to the
MITRE Non-Ada Database, any record in the database that contained reused SLOC, but did not
contain information about the percent redesigned, modified, or retested, was mapped into
modified SLOC. If the reused code had zero percent redesign and zero percent re-coding,
NCCA mapped it into verbatim SLOC. The SMC Database also contained a field to track the
level of rehosting that a program experienced. The values ranged from NOMINAL to EXTRA
HIGH. SMC defined VERY HIGH as a program with a major language or system change (refer
to Field #19 (Translated) in the Data Field Definition section for further information). EXTRA
HIGH is defined as a program having a major language and system change. If the program
indicated the rehosting effort to be VERY HIGH or EXTRA HIGH, then the reused SLOC from
the SMC Database was mapped into the NCCA Raw Database as rehosted code.

In addition to new and reused SLOC, the SMC Database included common SLOC. Figure 3-4
shows a graphical representation of the difference between new and common SLOC. Common
SLOC are SLOC in an individual CSCI that are identical to code in other CSCIs of the same
program.

Section 3 - Software Database

3 - 20

#1 #2 #3 #4

CSCIs

New Unique Code

Common
Code

Program

Figure 3-4: New Code versus Common Code

It was difficult to use this information because the SMC Database did not tag these CSCIs to
indicate which ones belonged to the same program. At the program-level, common SLOC were
counted once as new SLOC in the program count. However, at the CSCI-level, several
counting approaches could have been utilized. The common SLOC could have been counted
as new SLOC for the CSCI in which it was first developed, while subsequent CSCIs that used
the common SLOC would have counted it as reused SLOC. A second approach to counting
common SLOC at the CSCI-level would have been to prorate it into each CSCI's new SLOC
count. A total of five SMC data points in the NCCA Raw Database have common SLOC. In the
end, NCCA mapped common SLOC into verbatim SLOC.

A total of 38 unique data points from the SMC Database were included in the NCCA Raw
Database. Some of the 38 records did not contain the hours per man-month. However, NCCA
reviewed an older version of the SMC Database (the SSCAG Database) from 1989, which
explained that the original raw data was expressed in hours and was converted to man-months
using the 152 hours per man-month conversion factor. Thus, NCCA was able to verify that 152
hours per man-month were utilized for 35 of the 38 data points. An additional 41 data points
from the same database were duplicated in the REVIC Recalibration database.

The SMC Database contained programs and CSCIs with different scopes of effort. The SMC
Database used “check boxes” to indicate what software development phases were included in
the reported effort. NCCA adopted a similar approach to delineate which phases were in the
reported effort for the SMC Database and all other data sources (if this information was known).

The SMC Database did not contain a mode field; hence, NCCA used internally developed rules
to determine the mode of development. The data points were classified as “embedded” if the
architecture field indicated that it was “tightly coupled” or if the requirements volatility rating was
set to at least HIGH. The data points were considered “not embedded,” if the points did not
satisfy these criteria (i.e., no attempt was made to discriminate between semi-detached and
organic programs).

Section 3 - Software Database

3 - 21

Additionally, some SMC data points indicated the percentage of total effort by contractor
functional area (i.e., systems engineering, configuration management, quality assurance, data,
etc.). This information was not included in the NCCA Raw Database, but may be useful in
future research. The SMC Database also included a section for maintenance data.
Unfortunately, there were only two programs in the database with maintenance information.

Overall, the 79 data points extracted from the SMC Database are of high quality. Weaknesses
of these data points include the following:

1) The linkage of CSCIs to their associated programs was unknown.

2) The database did not provide the CSCI count for program-level data, which may be an

important factor when estimating integration costs.

3) Program and contractor names were unknown, which reduces the users’ ability to identify

the best analogies possible and increases the risk of duplicating data points when combined
with other databases.

4) Effort information, by phase, was not provided.

5) The database did not indicate if CSCI schedules were specific to individual CSCIs or

represented the top-level program schedule.

3.4.4 NASA SOFTWARE ENGINEERING LABORATORY (SEL)

DATABASE

The SEL is sponsored by the NASA Goddard Space Center in Maryland. The SEL collects and
analyzes software development data to investigate the effectiveness of software engineering
technologies.

References [2] and [10] provided a total of 37 data points to the NCCA Raw Database. These
programs were NASA programs which were predominately ground-based, satellite-support
programs. The support software programs were either attitude ground-support or telemetry-
simulation software. The software applications were used to determine and predict the orbit and
attitude of Earth-orbiting satellites. The data covered the mid-1970s to early 1990s. A total of
11 programs were written in Ada; the rest were written in FORTRAN. The programs ranged in
size from 9.1 to 338 KSLOC.

The data in the above referenced reports is a subset of a much larger NASA SEL Database.
This larger database, maintained by the Rome Air Development Center, contains extensive
information on 104 programs and includes error data, detailed product characteristics, effort,
growth history, change history, and program information. NCCA did not attempt to collect data
from this database, since additional data collection efforts will be the focus of NCCA’s future
software efforts.

The SEL counted SLOC by including every carriage return in the source code. This count
included comments and blank lines [10]. NCCA interpreted this as physical SLOC. However,
the 1995 report [2] added statement counts as well. Statements are defined as the number of

Section 3 - Software Database

3 - 22

logical statements and declarations. Recall that NCCA's first choice is to use the statement
count; however, not all programs had both counts. For those programs that did not have a
statement count, NCCA used the total SLOC and classified them as commented physical (CP)
SLOC in the NCCA Raw Database. Programs that had statement counts were classified as
logical (L) SLOC.

The SEL segregated source code into newly written, extensively modified (25 percent or more
of the code was modified), slightly modified (less than 25 percent of the code was modified),
and verbatim code. NCCA mapped newly written code into Field #15 (New), extensively and
slightly modified code into Field #16 (Mod), and verbatim code into Field #17 (Verbatim). (See
the Data Field Definitions section).

The SEL Database provided effort in man-hours by both phase (design, code and test) and
WBS activity. Schedule was provided in months by phase. The effort covered from pre-
program (software requirements) through clean up (system acceptance and test). The data also
captured other support efforts such as upper management, librarians, technical publications,
and secretarial support over the same period. Some of these efforts (upper management and
secretarial support) were overhead, while others were classified as direct support (librarians and
technical publications). Since these indirect efforts cannot be separated from other direct
support efforts, the entire effort was included in total effort in the NCCA Raw Database.
Additionally, effort was converted to man-months using the 152 hours per man-month factor.
No information was given as to the actual hours per man-month (factory hours per man-month)
that the staff experienced; however, this did not create a normalization problem since the
original reported units of effort were in man-hours.

The SEL Database included both System Test and Acceptance (Operational) Test in the
reported effort. However, since it was identified separately, NCCA was able to remove all
system-level testing from the reported effort. Therefore, SEL data points in the NCCA Raw
Database reflect effort from SDR to the completion of the CSCI test phase (FQT).

The SEL schedule data included preliminary design efforts. Hence, NCCA mapped the SEL
Database’s program start date to the completion of the SSR, Field #54 (recall from Figure 3-3
that preliminary design starts after SSR). The SEL Database included both system and
acceptance testing. Therefore, the program’s end date was mapped to the completion of the
Operational Test and Evaluation (OTE) in the NCCA Raw Database because completion of
OTE guarantees that all system and acceptance testing is complete.

Since the other databases displayed effort by phase only, the NCCA Raw Database used SEL
effort data by phase versus effort by WBS task to remain consistent. However, the SEL
Database did not break out the aforementioned support (direct and indirect) by phase, but
instead reported total support. As such, NCCA distributed the support across the phases using
the following allocation formula:17

+= Support*

E
E

EE
Total

i
iiADJ

17NCCA assumed that support would be present in both the System and Acceptance Test Phases. Therefore, the effort for these
phases was included to arrive at the proper allocation of effort to all phases (i.e., this distribution was performed before removing the
System and Acceptance Tests from the NCCA Database).

Section 3 - Software Database

3 - 23

where EiADJ is the effort in phase i, including support; Ei is the effort in phase i, excluding
support; ETotal is the sum of the individual phased efforts; and support is the total support
effort. Therefore,

Total EiADJ = ETotal + Support

The strengths of the SEL Database are as follows:

1) All data represented the same domain, and all programs fell within two categories: attitude

ground-support or telemetry-simulation software. This created a better data set to analyze
for changes in the development processes.

2) The SEL Database's productivity reflected modern processes and constant process

improvement.

The weaknesses of the SEL Database are as follows:

1) Software developed for NASA may not have the same level of documentation requirements

as software developed in DoD. Software developers at NASA are encouraged, but not
required, to develop software consistent with the guidelines set forth in reference [11], which
closely resemble DoD-STD-2167A.

2) All of the software was support software.

3) Only a few of the programs counted logical SLOC. The rest counted physical SLOC.

Still, the SEL data was of sufficient quality to be used for top-level normalized productivity
factors and regressions.

3.4.5 NAVY INTERNAL DATA

Several sources of contractor-specific data, internal to the Navy, were included in the NCCA
Raw Database. These data points were gathered by NCCA analysts in support of past ICEs
and other analyses. These data points represent software developed from the 1980s to mid-
1990s. Due to the business sensitive nature of the data, the source and contractor names are
not available in this document. This section provides an overview of the business sensitive
sources. Refer to Appendix B for specific details.

The NCCA Raw Database included a total of 127 data points, 50 at the program-level and 77 at
the CSCI-level, from Navy internal data sources. The data covered a broad spectrum of Navy
systems, including sonars, combat systems, trainers, electronic warfare, and C3. Programming
languages included FORTRAN, Ada, C, Pascal, and Assembly. The CSCI sizes ranged from
3.7 to 342 KSLOC, and the program sizes ranged from 2.6 to 1,421 KSLOC. In most cases, the
quality of the data points was not very high. Several programs did not indicate the hours per
man-month or phases of effort in the total effort expended. Further, the scope was non-
standard (i.e., did not reflect SDR through FQT) and several programs used physical SLOC
counts. Yet, there was a sufficient amount of high quality data available after normalization to
be used for normalized regression and productivity factor analysis.

Section 3 - Software Database

3 - 24

3.4.6 SILVER SASET VALIDATION DATABASE

This database came from an undated SASET validation study. There was no published report
associated with this database; however, a presentation of the results of the study was given in
1990. The Silver Database, in its raw form, contained 42 CSCIs from 23 programs. The
programs were developed from the 1970s to the mid-1980s. CSCI sizes ranged from 0.6 to 131
KSLOC, and program sizes ranged from 22 to 469 KSLOC. No information was provided about
the programming languages used other than the top-level percentage of HOL and Assembly
language.

Many of the data points were identical to those in the MITRE Non-Ada Database. To avoid
duplication, NCCA screened each data point in the Silver Database to determine if it was
already included in the MITRE Non-Ada Database. However, even if a duplicate was found in
the Silver Database, additional information was often discovered. The Silver Database included
additional fields such as program and/or CSCI name, CDR date, date of Initial Operational
Capability (IOC). In one case, the MITRE Non-Ada Database had only program-level data while
its match in the Silver Database decomposed the program by CSCI. The inclusion of the more
granular CSCI-level data should enable the analyst to make stronger analogies.

For screening purposes, NCCA identified the following key fields to compare:

1) Total SLOC
2) Effort
3) CSCI name with CSCI initials

Appendix B contains the 11 data points from the Silver Database which were duplicated in the
MITRE Non-Ada Database.

The Silver Database defined SLOC as DSLOC, but no formal definition was provided for SLOC.
Therefore, except for the programs matched to the MITRE Non-Ada Database, a “?” appears in
Field #22 (Count) of the NCCA Raw Database for those programs in the Silver Database.

SLOC were decomposed by code condition (i.e., new, modified, and rehosted) and language
(i.e., HOL and Assembly). The specific name of the HOL was not provided; therefore, Field #10
(Lang1) in the NCCA Raw Database listed “HOL” as the programming language. This excluded
this data from any later analyses that required the name of a specific HOL as an input.

Unless the program matched a data point from the MITRE Non-Ada Database, the hours per
man-month were also unknown. In the NCCA Raw Database, this means that Field #25
(MM.eq.152) contained a question mark for those data points.

Since the type of counting convention, scope of effort, programming language and hours per
man-month were all unknown, unless the same data points were found in the MITRE Non-Ada
Database, this database is useful only to develop non-normalized, top-level productivity factors.

Section 3 - Software Database

3 - 25

3.4.7 REVIC RECALIBRATION DATABASE

The REVIC Recalibration Database contained program and CSCI-level data that was collected
to recalibrate the REVIC effort and schedule equations. The study [12] relied on more than five
different sources of data including the SMC Database, Front Range Ada Working Group, Wright
Patterson Air Force Base, IITRI, and others (such as NASA, Boehm, and the Jet Propulsion
Lab).

A total of 114 data points were compiled; 41 of these came from the SMC Database. The
REVIC Database provided some program names, while the SMC Database did not. NCCA
cross-referenced the REVIC Database with the SMC Database by comparing size, language,
application, effort, and schedule. This was similar to the methods used to compare the Silver
Database with the MITRE Non-Ada Database. Appendix B contains the REVIC data points
duplicated in the SMC Database. The overall quality of data from this database was mixed.
The 41 data points originating from the SMC Database were of a higher quality than the
remaining data points and can be utilized to generate normalized tools. However, the remaining
data is useful only for a top-level non-normalized analysis.

3.4.8 IITRI DATABASE

The IITRI Database [13] consisted of eight data points which also appear in the REVIC
Recalibration Database described above. However, the IITRI Database provided additional
information that was added to the NCCA Raw Database. IITRI collected data primarily to
determine how several software cost estimating models compare when estimating Ada
development programs. The report also specifically tracked the amount of Ada experience each
programmer possessed. This experience ranged from zero to five years. However, it did not
track the quantity of programs that the programmer had developed in Ada.

Some of the data points were not 100 percent Ada (i.e., Assembly language was also used).
CSCI sizes ranged from 18.3 to 480 KSLOC. Several types of software were represented,
including C3, avionics, and Ada support tools. One data point reflected commercial
development standards, while the rest were developed based on various DoD standards,
including DoD-STD-2167A.

It appears that IITRI defined these data points as program-level, yet the REVIC study showed
them as CSCIs. Schedule information did not appear in the data summary tables in the IITRI
report; however, page 3-16 of the report provided actual schedules. IITRI made a point to state
the scope of effort (SDR through FQT), but never mentioned whether the schedule was also
specific to these review dates. NCCA classified these data points as CSCIs, following the
REVIC Database’s format. If these points turn out to be programs and the schedule’s phasing
is comparable to the effort phasing, an additional eight data points can be added to the
normalized software schedule estimating database. (See Section 8 - Schedule Analysis for a
discussion of the schedule estimating effort.)

The IITRI data should be used with caution for the following reasons:

1) It is not precisely known if these are programs, CSCIs, or a mixture of the two.

Section 3 - Software Database

3 - 26

2) Data point #5 was commented physical SLOC. IITRI spoke to the software developer and
decreased the SLOC count by 20 percent to convert from physical SLOC to logical SLOC.
Reference [13] did not state whether the count shown was the adjusted number or the raw
number. In any case, NCCA removed the 20 percent discount factor and classified this
point as “CP” in Field #22 (Count).

3) Data points #7 and #8 showed SLOC without indicating if they were new. The other six

points were labeled “New Ada” or “New Assembly.” The lack of “New” in front of data points
#7 and #8 may indicate these were raw totals. However, since these data points were
treated as 100 percent new SLOC in the REVIC Database, NCCA treated them as 100
percent new SLOC.

Overall, half of this data was useful only to develop top-level non-normalized factors.

3.5 RESULTS

As a result of the extraction of data points from the aforementioned databases, the NCCA Raw
Database contains a total of 457 records. Each record contains 73 attribute fields, although not
all fields are completed for each record. These fields describe various attributes of the program,
including size, effort, schedule, language, scope, process, and many others. The database
contains many different DoD and NASA software development programs at both the program-
and CSCI-level. Not all of the data is of the quality NCCA requires. However, there are enough
well-defined data points for the analyst to perform credible software cost analyses. Table 3-2
presents top-level comparisons of the program- and CSCI-level data:

Characteristics Program-Level CSCI-Level
Number of Data Points 151 306
Number of Ada Data Points 42 134
Size Range (KSLOC) 2.3 - 1,800.0 0.4 - 595.1
Effort Range (MM) 9 - 26,500.0 1.7 - 6,593.0
Amount of Reused (%) 0 - 100 0 - 96

Table 3-2: NCCA Raw Database Summary

Table 3-3 provides a comparison of the source databases by program and CSCI. Note the
smaller number of data points for the program-level data. The program-level data points were
extracted primarily from NASA and Navy Internal sources, while the CSCI-level data was
extracted primarily from Navy Internal, REVIC Recalibration and SMC source databases.

The programs represented by these data points were written in several different programming
languages. With the advent of fewer government mandates, programming in languages other
than Ada will increase. For example, commercial vendors currently rely heavily on the C
programming languages. The NCCA Raw Database does not contain any programs which
used a 4GL.18 Table 3-4 compares the primary programming languages by program and CSCI.
Note that there were some data points where the programming language was unknown.

The NCCA Raw Database covers diverse mission areas. However, the MIS area is not well
represented. This is the most challenging area to collect data, as it is more sensitive to rapid

18 Refer to the NCCA Issue Paper “Fourth Generation Languages” for a discussion of this topic.

Section 3 - Software Database

3 - 27

changes in the commercial sector. The problem is compounded by DoD's increasing emphasis
on utilizing COTS software.19 Table 3-5 compares the data by mission area.

 Number of Data Points
Source Database Program CSCI Total

1. MITRE Non-Ada 21 51 72
2. MITRE Ada 17 13 30
3. SMC 17 62 79
4. NASA SEL 33 4 37
5. Navy Internal 50 77 127
6. Silver SASET Validation 12 35 47
7. REVIC Recalibration 1 56 57
8. IITRI Report 0 8 8

Total 151 306 457
Table 3-3: NCCA Raw Database Data Sources

Primary Language Program-Level CSCI-Level
Ada 42 134
Assembly 19 36
Atlas 0 3
C 4 20
CMS-2 12 21
COBOL 3 7
FORTRAN 48 20
JOVIAL 8 33
Other 12 31
Unknown 3 1

Table 3-4: Summary of the NCCA Raw Database by Programming Language

Mission Area Program-Level CSCI-Level
ASW 4 55
C3 47 114
EW 6 0
MINE 3 0
MIS 7 16
MISSILE 2 7
RADAR 14 32
SIM 42 12
SONAR 7 1
TORP 2 0
UUV 2 2
UNKNOWN 15 67

Table 3-5: Summary of the NCCA Raw Database by Mission Area

Four platform types are represented in the database. The majority of the systems are ground
systems; however, there are a substantial number of programs and CSCIs where the platform
type is unknown. Platform types are summarized in Table 3-6.

 Number of Data Points
Platform Program CSCI

Air 21 17
Ground 78 118
Ship 29 69
Unmanned Space 0 11
Unknown 23 91

Table 3-6: Summary of the NCCA Raw Database by Platform

19Refer to the NCCA Issue Paper “Commercial-Off-The-Shelf Integration” for a discussion of this topic.

Section 3 - Software Database

3 - 28

While the results seem impressive, users are cautioned that the tables are based on the non-
normalized data set (all 457 points). Sections 4 and 5 - Effort Analysis: Significant Drivers
and Normalized Regressions, thoroughly explain the process of filtering the data points to
obtain a normalized, standardized set of data points. Further subdivision of the NCCA Raw
Database may reduce the number of data points within a specific mission area to zero.

3.6 CONCLUSIONS

NCCA invested extensive effort to compile all readily available data into one centralized
database. The NCCA Raw Database represents a strong foundation upon which to build further
capability and robustness. Overall, the database can be used to produce top-level non-
normalized productivity factors, normalized productivity factors or effort regressions, and
schedule estimators. With the future addition of high quality data, NCCA plans to use the
database to track productivity improvements over time, develop schedule estimates at the
CSCI-level, investigate the effect of development processes and standards on productivity, and
investigate the productivity of 4GLs.

Finally, the authors would like to point out the continued scarcity of historical software data both
in the Navy and throughout the government. While the 457 data points available in the NCCA
Raw Database sound impressive, the data reflects a 25-year period of data collection. In that
time, thousands of programs have been developed with perhaps tens of thousands of
subcomponents. DoD has not performed well in collecting software data.

There is no formal mechanism in place to collect this data in a standardized, well-defined
manner; therefore, cost analysts should make every attempt to obtain high quality data and
devise better metrics to measure software products and processes. There are many factors
and reasons why a software program can go awry and fail. Poor schedules20 and improper
budgets should not be among them.

3.7 FUTURE EFFORTS

It is clear that more can be done to improve the historical database. While compiling the current
version of the NCCA Raw Database, several potential improvements and enhancements were
identified:

1) Maintenance: The current database covers only software development. Software

maintenance, which represents 50 to 70 percent of software life cycle cost, is not covered.
The SMC Database contains additional fields to collect software maintenance information,
but, as of Version 2.1, only two records in the database contain maintenance information.
NCCA is currently working with NSWC, Dahlgren to remedy this situation by funding the
collection and analysis of Navy software maintenance data.21

2) 4GL: The current database does not contain any programs written in a 4GL. The MIS area

will be the first to see the increased adoption of 4GLs. Further research into the literature is

20 Refer to the NCCA Issue Paper “The Impacts of Schedule Slippage/Compression on the Software Development Effort” for a
discussion of this topic.
21 Refer to the Technomics study, titled “Software Life Cycle Cost Process Model,” dated April 1995.

Section 3 - Software Database

3 - 29

needed to determine what is the best and easiest metric to measure 4GL programs. SLOC
may no longer be sufficient because much of the code is generated automatically and in a
non-sequential manner.

3) Effort by Phase: Most of the data points contain total effort only. However, some of them

provide effort by major phase (e.g., design, code, unit test, integration, and system test).
Still, more effort should be devoted to collecting the effort by phase, primarily because it is
hypothesized that some phases are more sensitive to the SLOC count than others. Detailed
Design and Code and Unit Test are two such phases. Regressions based only on these two
phases may result in better statistics. Other phases may be appropriately estimated by
utilizing a level-of-effort approach. Additionally, not all estimates require the same scope of
phasing. If the effort is decomposed by phase, then general factors can be developed to
either add or delete effort from the total.

4) Effort by WBS: The only databases to provide effort information by WBS were the SMC

and SEL Databases. The other databases treated the WBS as a normalizing factor and
tried to ensure that the total effort information included common WBS tasks. See reference
[5] for more details. Collecting effort by specific WBS greatly enhances the ability to
standardize effort data.22 It also allows the analyst to generate standard factors by WBS.
These are useful in addressing the impact of process and acquisition changes on cost,
which are of prime interest in today’s acquisition reform environment. For instance, if data
requirement costs are reduced by 50 percent, how much savings will there be to the total
software development cost?

5) Process: Most of the fields in the NCCA Raw Database describe the software product, but

fail to describe the process that created the software. If a set of objective attributes can be
found to define what process is used to generate the software product, then stronger
analogies and tighter regressions may result. One attribute already captured is the
development process (i.e., waterfall, incremental, spiral, etc.). This, however, is only the tip
of the iceberg. Attributes like those set forth in the Capability Maturity Model23 should be
explored. Other software models attempt to capture these attributes, most, however, are
too subjective.

6) Function Points: Another way to estimate the overall size of the software product is to

count function points. Function point enthusiasts claim it is easier for a software engineer to
estimate how much functionality his or her software product will have than to develop an
estimate of the SLOC that need to be produced. In the past, it was claimed that weapon
systems were not good candidates for function point counts. Capers Jones attempted to
address this shortfall through the creation of feature points (which take into account the
number of algorithms in a program). Today not only has the function point counting practice
matured, but modern military systems are looking more and more like sophisticated MIS
systems and less and less like black boxes. This may enable greater application of function
points in estimating weapon systems.

7) Tools: Great advances have been made in software development tools over the past few

years. What effect do modern tools like Visual Basic or PowerBuilder have on the overall

22 Refer to the NCCA Issue Paper “The Relationship Between MIL-STD-881B and DoD-STD-2167A” for a discussion of this topic.
23 Refer to the NCCA Issue Paper “Software Engineering Institute Capability Maturity Model” for a discussion of this topic.

Section 3 - Software Database

3 - 30

productivity of software developers? How can they be measured? These answers may
unlock the door to many other productivity issues.

8) Effort Associated with Deleted Code: As discussed previously, many companies do not

track the amount of deleted code. The effort to understand and remove faulty code may be
more difficult than currently assumed. By tracking the effort associated with deleted code,
regressions and productivity metrics may experience great improvements.

9) Effort by Type: Similarly, if companies captured not only the effort and size associated with

the delivered operational code but also the effort associated with non-delivered code,
improvements in cost estimating tools may result.

EFFORT ANALYSIS:
SIGNIFICANT DRIVERS

4.1 INTRODUCTION

This section of the handbook documents the methodology and procedures used to determine
which software attributes drive productivity. Identification of the significant productivity drivers
aided in the development of data normalization procedures as well as providing guidelines for
the development of effort estimating tools (Section 5 - Normalized Regressions).

The analysis was performed on four levels; each level tested a different set of attributes. NCCA
chose to limit the analysis to objective metrics since 1) the analysis was geared toward the
novice software cost estimator and 2) subjective metrics would increase the uncertainty.

This portion of the handbook is organized into the following sections:

• Raw Data
• Methodology and Results
• Conclusions
• Weaknesses
• Future Efforts

4.2 RAW DATA

All data used in this section came from the NCCA Raw Database (see Section 3 - Software
Database). However, analysis of the NCCA Raw Database in its non-normalized state does not
provide meaningful results. Many of the records in the database used different units of measure
for items like size, effort, and schedule. To rectify this, NCCA decided to compile a normalized
database. There are two possible approaches for constructing the normalized database.

The first approach is to keep all data points, but adjust them as necessary to obtain consistent
units of measure. If the NCCA normalized database required each data point to include all
phases of the software development effort and a data point did not include the effort for the
Software Requirements Analysis Phase, then the data point would have to be adjusted to
include the Software Requirements Analysis Phase. The question then becomes, “What factors
should be used to make these adjustments?” The answer can vary tremendously and may be
based more on engineering judgment than on empirical study. Using this first approach may
introduce an additional layer of uncertainty into an already highly volatile database.

The second approach is to filter out any data points that do not meet the specified criteria (e.g.,
exclude all Assembly data points, include only ship programs, etc.). The main advantage of this
approach is that no additional uncertainty is introduced into the analysis. The main

4

Section 4 – Effort Analysis: Significant Drivers

4 - 2

disadvantage to this approach is the reduction in the amount of data. In other words, the more
specific the filter, the fewer data points that remain at the end of the normalization process.

To minimize uncertainty, NCCA chose to normalize the database by filtering out those data
points which did not satisfy the specified criteria (i.e., no factors were used to make adjustments
to the data points). The remainder of this section of the handbook focuses on determining
significant productivity drivers. The results of the analysis will determine how the data must be
filtered to constitute a “normalized” database.

4.3 METHODOLOGY AND RESULTS

NCCA conducted analysis on four levels. For each level of analysis, five-steps were followed to
determine which attributes drive productivity. First, NCCA determined which attributes should
be tested as possible productivity drivers. Second, the relevant data sets were filtered from the
NCCA Raw Database. NCCA created eight data sets for the Level One analysis, three data
sets for the Level Two analysis, 17 data sets for the Level Three analysis, and 17 data sets for
the Level Four analysis. Third, productivity (Hours/ESLOC) was calculated for each data point.
Fourth, average productivity, standard deviation, and coefficient of variation (CV) were
calculated for each set of data. Fifth, statistical tests were conducted on the sets of data to
determine whether the data sets were statistically different. See Appendix C for definitions of
the statistical measures.

4.3.1 LEVEL ONE

Level One analyses were top-level and conducted to determine whether a) mission (MIS versus
weapon system); b) counting convention (physical versus logical); c) language (Assembly
versus HOL); and/or d) phasing (SDR through FQT versus other life cycle phases) were
significant productivity drivers.

In this section, the methodology and the results for each attribute tested for the Level One
analysis will be discussed. The results from Level One are in Appendix C. Throughout this
section, tables (such as Table 4-1) demonstrate exactly how the data was filtered from the
NCCA Raw Database. The italicized words are the field names from the NCCA Raw Database
used for the filters. The non-italicized words are the criteria utilized to filter the database.
Additionally, figures (such as Figure 4-1) show the resulting data sets after the filtering criterion
was applied (the double boxes depict the “normalized” database filters).

4.3.1.1 MISSION

METHODOLOGY

The operational requirements of MIS and weapon systems are quite different. Weapon systems
typically require real-time processing. In addition, failure of a weapon system could result in
failure of the mission or in loss of life. Thus, the reliability requirements for weapon systems are
very demanding. In contrast, MIS are not typically real-time, mission critical systems, and
failure of the system does not result in loss of life. Thus, the reliability requirements for a MIS

Section 4 – Effort Analysis: Significant Drivers

4 - 3

are much less stringent. Due to these differences, it was expected that the productivity to
develop weapon system software would be lower than that to develop MIS software.

To determine whether mission drives productivity, two data sets (weapon system and MIS) were
filtered from the NCCA Raw Database, as Figure 4-1 illustrates. The 112 data points deleted
did not meet the filtering criteria (i.e., mission was not known) or they were deemed outliers, as
discussed below.

Deleted
112

 NCCA Raw Database

457
MIS
17

Weapon Sys
328

Figure 4-1: Mission Data Sets

The original MIS data set consisted of 23 MIS programs (or data points) from the NCCA Raw
Database with known code condition.24 The following six data points were then deleted from the
data set resulting in a final MIS data set of 17 data points: NCCA-39, NCCA-43, NCCA-55,
NCCA-74, NCCA-92, and NCCA-157. These points were deleted due to the possibility that they
were duplicates and reflected effort that was allocated to the CSCI-level.

Table 4-1 shows the filters used to obtain the MIS data set from the NCCA Raw Database. The
weapon system data set (328 data points) consists of all weapon system programs from the
NCCA Raw Database with known code condition.

MIS Weapon System
New ≠ blank

Mission = MIS
(Eliminated 6 outliers)

New ≠ blank25
Mission ≠ MIS or blank26

Table 4-1: MIS and Weapon System Data Sets

The productivity expressed in Hours per equivalent new SLOC (ESLOC), was then calculated
for each data point. The measure, ESLOC, is a means to normalize SLOC counts to reflect the
fact that new code requires greater development effort than not new code. A popular method to
determine ESLOC is discussed in reference [5]. The method is based on engineering judgment
and an assumed distribution of effort between design, code, and test. The term Adaptation
Adjustment Factor (AAF) describes the overall weight given to the adapted (i.e., not new)
SLOC.

AAF = 0.4 DM + 0.3 CM + 0.3 IM

24The code condition must be known to perform the ESLOC calculation.
25This field must be filtered manually. There is one program with zero percent new code. LOTUS treats this data point as if there
was a blank in the field and eliminates it.
26All data points with a blank Mission Field were also eliminated since they could be MIS programs.

Section 4 – Effort Analysis: Significant Drivers

4 - 4

Where DM (% design modified), CM (% code modified), and IM (% of integration and test
required) are percentages of the adapted software’s code that needs to be redesigned, recoded
and retested. Thus, if DM equals 100 percent, the adapted SLOC undergoes 100 percent
redesign. If DM equals zero, the adapted SLOC undergoes no redesign. After determining
AAF, ESLOC are calculated by the following equation:

ESLOC = New SLOC + (AAF * Adapted SLOC)

There are three problems with this methodology:

1) DM, CM, and IM must be subjectively estimated by an engineer at the start of the project,

presumably when little information is available.

2) With the advent of Best Commercial Practices, many standards and requirements are being

relaxed (which might decrease the amount of documentation and testing required). This
would impact the phasing distribution assumed in the AAF equation above.

3) There is no uncertainty range around any of the assumed values (i.e., around the

coefficients or around DM, CM, and IM).

These problems make it difficult to assess the overall variance of the effort estimate and
therefore, to budget to the true most likely estimate.

Due to the problems associated with the subjectivity of this methodology, NCCA adopted an
alternative approach. The NCCA Raw Database contains a mixture of different kinds of
development. They include:

1) 100 percent new program developments
2) Programs with various levels of reused code (both external and internal)

Based on the composition of the NCCA Raw Database, NCCA’s alternative approach calculates
ESLOC empirically. NCCA used an Efactor27 (Equivalent Code Conversion Factor) to convert
reused SLOC into ESLOC. The Efactor weights reused SLOC as a percentage of new SLOC.
The term ESLOC is defined as follows:

ESLOC = New SLOC + (Efactor * Reused SLOC)

Efactors are iteratively derived using a simple spreadsheet model. The model performs a
"tradeoff analysis." During the analysis, the model assigns the Efactor a value between zero
and one, and then solves for the X variable, ESLOC. After the productivity, expressed in
ESLOC, is calculated, the CV is computed. (See Appendix C for further details.) The Efactor is
then changed and the productivity and CV are re-calculated. This continues until the
productivity and CV corresponding to each Efactor value, in increments of 0.01 between zero
and one, have been computed. The results are then analyzed to determine the value of the
Efactor that produced the productivity with the lowest CV.

27Note: 0 ≤ Efactor ≤ 1

Section 4 – Effort Analysis: Significant Drivers

4 - 5

Table 4-2 summarizes the strengths and weaknesses of the two different approaches to
estimating ESLOC.

ESLOC Method Strengths Weaknesses
Engineering Judgement-
Typical Approach

1) Based on a technical assessment of
effort to be performed
2) Estimate would be company specific

1) Subjective assessment
2) Information required to make assessment may
not be available early in the program's development
3) Assumed distribution of effort
4) No uncertainty around estimate (%redesign,
%recode, and %retest are an assumed distribution)

Empirical - NCCA Approach 1) Objective approach
2) Approach can be applied early in
development cycle
3) Reflects industry averages (if industry
average vice contractor-specific data is
used)
4) Uncertainty around estimate captures
Efactor uncertainty

1) No specific uncertainty around Efactor
2) Not contractor-specific unless underlying data is
3) Dependent upon mapping of reused SLOC into
correct fields (Two Efactor equation only)

Table 4-2: ESLOC Methods (Strengths and Weaknesses)

Productivity was calculated for each data point as follows:

Productivity =
ESLOC

)MM/Hours(*MM

where: MM is equal to the number of man-months of effort expended to develop the software
program; Hours/MM is equal to the number of hours in a man-month; and ESLOC is the number
of equivalent new SLOC.

Most of the source databases tracked effort in man-months. For this level, a 152-hour man-
month was assumed for those data points that did not provide the hours per man-month rate.

The average productivity, standard deviation, and CV were then calculated for each data set. In
addition, NCCA performed statistical tests on the data to determine which metrics drive
productivity. The t-test and the Mann-Whitney U test were used to determine whether the
productivities of the two data sets were statistically different. For both tests, NCCA assumed a
two-tailed test and a confidence level of 95 percent (α = 0.05).

The t-test was used to test the hypothesis that the two data sets are from populations with the
same mean. The test assumes two independent, normal populations with unknown means and
unknown but equal variances (s1

2 = s2
2 = s3

2). See Appendix C for details on the t-test.

The Mann-Whitney U test is a nonparametric alternative to the t-test appropriate when sample
sizes are small.28 It is a ranking test which assumes that if the two data sets are actually drawn
from the same population, then the observations will be dispersed throughout (i.e., one data set
is not concentrated among the smaller values, while the other is concentrated among the larger
values). See Appendix C, and reference [14] for details on the Mann-Whitney U Test. The
results from the Mann-Whitney U Test are also contained in Appendix C. This methodology
was duplicated for all remaining levels of analyses which follow.

28NCCA utilized the Mann-Whitney U test when any data set consisted of 20 or fewer data points.

Section 4 – Effort Analysis: Significant Drivers

4 - 6

RESULTS

The software development productivity for MIS programs (0.824 Hours/ESLOC) was statistically
higher than that for weapon systems (1.781 Hours/ESLOC). Therefore, since the mission (or
domain) of the system is a significant productivity driver, MIS programs should not be combined
with weapon system programs. Table 4-3 shows the detailed results and corresponding
statistics.

Metric Efactor # of Data Points Average Productivity (Hours/ESLOC) CV Test Equal?
MIS
Weapon Systems

0
0.46

17
328

0.824
1.781

72%
128%

Mann-Whitney

No

Table 4-3: Level One Statistical Results (Mission)

4.3.1.2 COUNTING CONVENTION

METHODOLOGY

There are many ways to count SLOC in a program, and each produces a different result as
discussed in Section 3 - Software Database. Each carriage return is counted as a line when
counting physical SLOC. When counting logical SLOC, each complete command is counted as
a line, regardless of how many physical lines the command takes. Logical SLOC are typically
more reflective of the true effort associated with a function, because the count is not influenced
heavily by coding style. Due to these differences, it was expected that software programs sized
by a physical code count would appear to be more productive than programs sized by a logical
code count.

To determine whether counting convention drives productivity, two data sets (logical and
physical) were developed. Since mission was proven to be a productivity driver and this
handbook is concerned with weapon systems, MIS programs were excluded from the remaining
data sets. The two data sets developed for this test were filtered from the weapon system data
set, as demonstrated in Figure 4-2.

Deleted
112

Deleted
81

 NCCA Raw Database

457
MIS
17

Physical
18

Weapon Sys
328

Logical
229

Figure 4-2: Counting Convention Data Set

The physical data set consisted of weapon system programs with known code condition that
were sized by a physical code counting convention. The logical data set consisted of weapon

Section 4 – Effort Analysis: Significant Drivers

4 - 7

system programs with known code condition that were sized by a logical code counting
convention. See Table 4-4 below.

Physical Logical
Count = P

Mission ≠ MIS or blank
New ≠ blank

Count = L
Mission ≠ MIS or blank

New ≠ blank29
Table 4-4: Physical and Logical Data Sets

RESULTS

The software development productivity for programs sized using a physical code count (0.735
Hours/ESLOC) was statistically higher than that for programs sized using a logical code count
(1.739 Hours/ESLOC). Therefore, counting convention is a productivity driver and should be
considered when estimating productivity. Table 4-5 shows the detailed results and
corresponding statistics.

Metric Efactor # of Data Points Average Productivity (Hours/ESLOC) CV Test Equal?
Physical
Logical

0
0.53

18
229

0.735
1.739

104%
124%

Mann-Whitney

No

Table 4-5: Level One Statistical Results (Counting Convention)

4.3.1.3 LANGUAGE

METHODOLOGY

Assembly is a second-generation language (2GL) and is one step above machine language.
HOLs are third-generation languages (3GLs) and are closer to spoken language than 2GLs.
HOLs were developed to make writing and understanding programs easier. Additionally,
programs that used significant amounts of Assembly probably did so because of severe
constraints on memory or timing requirements. This extra level of complexity is in contrast to
other programs that did not have these constraints. Based on this reasoning, it was expected
that the productivity to develop code written in an HOL would be higher than that to develop
code written in Assembly.

To determine whether language level drives productivity, two data sets, which also reflect the
results of the mission and counting convention productivity analyses previously discussed, were
developed from the NCCA Raw Database. Thus, the two data sets developed for this test were
filtered from the logical data set, as demonstrated in Figure 4-3.

The HOL data set consisted of weapon system programs with known code condition that were
sized by a logical code count and written primarily in an HOL (greater than or equal to 70
percent). NCCA used HOL greater than 70 percent as the cutoff, based on recent programs
that NCCA reviewed. Sensitivity analyses were performed at 80 percent HOL and 90 percent
HOL. On the whole, the 80 percent filter produced comparable results to the 70 percent
criterion, but with fewer data points. The 90 percent HOL filter was so restrictive that, at the
program-level, entire database sources were deleted. Hence, to retain as many data points as
possible, while still addressing the impacts of Assembly, NCCA chose 70 percent as the cutoff

29This field must be filtered manually. There is one program with zero percent new code. LOTUS treats this data point as if there
was a blank in the field and eliminates it.

Section 4 – Effort Analysis: Significant Drivers

4 - 8

percentage. This percentage actually makes the resulting differences smaller (i.e., if 100
percent HOL programs had been used in the data set rather than greater than 70 percent HOL
programs, the resulting differences would have been larger).

Deleted

112
Deleted

81

 NCCA Raw Database
457

MIS
17

Physical
18

Deleted
6

Weapon Sys

328

Assembly
38

Logical

229 HOL
185

 Figure 4-3: Language Data Set

The Assembly data set consisted of weapon system programs with known code condition that
were written entirely in Assembly (zero percent HOL). See Table 4-6 below. Counting
convention was not filtered for the Assembly data set because programs written in Assembly
are always sized by a logical code counting convention.

HOL Assembly
HOL ≥ 0.7
Count = L

Mission ≠ MIS (or blank)
New ≠ blank30

HOL = 0
Mission ≠ MIS or blank

New ≠ blank

Table 4-6: HOL and Assembly Data Sets

RESULTS

The software development productivity for programs written in Assembly (3.990 Hours/ESLOC)
was statistically lower than that for programs written in an HOL (1.860 Hours/ESLOC).
Therefore, since language is a significant productivity driver, programs written in Assembly must
be treated separately from programs written in an HOL. See Table 4-7 for the detailed results
and corresponding statistics.

Metric Efactor # of Data Points Average Productivity (Hours/ESLOC) CV Test Equal?
Assembly
HOL

0.69
0.04

38
185

3.990
1.860

98%
83%

t-test

No

Table 4-7: Level One Statistical Results (Language)

30This field must be filtered manually. There is one program with zero percent new code. LOTUS treats this data point as if there
was a blank in the field and eliminates it.

Section 4 – Effort Analysis: Significant Drivers

4 - 9

4.3.1.4 PHASING

METHODOLOGY

Total effort is the accumulation of work performed over a specific period of time. Depending on
how the start and stop points are defined, a different accumulation of effort results. DoD 2167A
defines 11 phases of system development, including software development (see shaded area in
Figure 4-4). Assuming there is some software-related effort in each phase, a different amount
of effort will result when particular phases are included or excluded.

 SRR SDR SSR PDR CDR TRR FQT PCA

 SYSTEM SYSTEM S O F T W A R E PRELIMINARY DETAILED CODING CSC CSCI SYSTEM TEST & PROD &
PHASES: RQTMTS DESIGN RQTMTS DESIGN D E S I G N & CSC INTEG & TESTING INTEG & EVAL DEPLOY

 A N A L T E S T TEST TEST

SRR - System Requirements Review

SDR - System Design Review

SSR - Software Specification Review

PDR - Preliminary Design Review

CDR - Critical Design Review

TRR - Test Readiness Review

FQT - Formal Qualification Test

PCA - Physical Configuration Audit

Figure 4-4: Phases of Software Development

For example, consider software requirements. Sometimes software requirements are captured
in the System Requirements Analysis Phase rather than in the Software Requirements Analysis
Phase. Sometimes software requirements are performed by the government rather than by a
contractor. NCCA conducted a test to determine whether the software requirements effort was
a significant portion of the total life cycle development.

To determine whether phasing drives productivity, two data sets were developed from the
NCCA Raw Database which reflect the results from the mission, counting convention and
language productivity analyses previously discussed. The two data sets developed for this test
were filtered from the HOL data set, as demonstrated in Figure 4-5.

The normalized data set consisted of weapon system programs with known code condition that
were sized by a logical code count, written primarily in an HOL, normalized to a 152-hour man-
month, and included the effort associated with the phases of SDR through FQT (see the double
boxes in Figure 4-5). Once the explicit phases are specified, the hours per man-month rate
associated with the phases must be known. Therefore at this level, and henceforth NCCA
excluded data points where the hours per man-month were unknown. All other data points had
effort normalized to 152 hours per man-month.

Section 4 – Effort Analysis: Significant Drivers

4 - 10

Deleted
112

Deleted

81

MIS
17

Deleted
6

Physical

18
Deleted

40 NCCA
Database

457

Weapon
Sys
328

Assembly
38

Logical
229

Partially Normalized
SSR through FQT 21

HOL
185

Normalized

SDR through FQT 124
Figure 4-5: Phasing Data Set

The partially normalized data set consisted of weapon system programs with known code
condition that were sized by a logical code count, written primarily in an HOL, normalized to a
152-hour man-month, and included the phases of SSR through FQT. See Table 4-8.

Normalized Partially Normalized
Mission ≠ MIS or blank

Count = L
HOL ≥ 0.7

New ≠ blank31
MM.eq.152 = Y

REQ = 1
PD = 1
DD = 1
CUT = 1

CSC TST = 1
CSCI TST = 1

SIT = 0
OTE = 0

Mission ≠ MIS or blank
Count = L
HOL ≥ 0.7

New ≠ blank
MM.eq.152 = Y

REQ = 0
PD = 1
DD = 1
CUT = 1

CSC TST =1
CSCI TST = 1

SIT = 0
OTE = 0

Table 4-8: Normalized and Partially Normalized Data Sets

RESULTS

The software development productivity for partially normalized (SSR through FQT) programs
(1.096 Hours/ESLOC) was statistically higher than that for normalized (SDR through FQT)
programs (2.025 Hours/ESLOC). This test proves that the Requirements Analysis Phase (from
SDR through SSR) is a significant portion of the software development life cycle; therefore,
phase-specific data sets should be utilized when estimating productivity. Table 4-9 shows the
detailed results and corresponding statistics.

Metric Efactor # of Data Points Average Productivity (Hours/ESLOC) CV Test Equal?
Partially Normalized
Normalized

0
0.03

21
124

1.096
2.025

45%
86%

t-test

No

Table 4-9: Level One Statistical Results (Phasing)

Since mission, counting convention, language, and phasing were all proven to be significant
productivity drivers, NCCA used data from the “normalized” data set (124 data points) for the
next three levels of tests. This means that all data utilized for the remainder of the analyses

31This field must be filtered manually. There is one program with zero percent new code. LOTUS treats this data point as if there
was a blank in the field and eliminates it.

Section 4 – Effort Analysis: Significant Drivers

4 - 11

were weapon system programs with known code condition that were sized by a logical code
count, written primarily in an HOL (greater than or equal to 70 percent), normalized to a 152-
hour man-month, and included the phases of SDR through FQT. This was an attempt to
eliminate as many known productivity drivers as possible so that any differences in productivity
could be isolated to the remaining attributes being tested.

4.3.2 LEVEL TWO

The Level Two Analysis was conducted to determine whether productivity rates are significantly
different for CSCI-level versus program-level versus one-CSCI program-level programs. One-
CSCI programs are programs with only one CSCI.

METHODOLOGY

By definition SDR through FQT does not include System Requirements and System Integration.
These tests were conducted to verify that fact in regards to the specific data points included in
this analysis.

Three data sets were developed to conduct the Level Two analysis. The three data sets were
filtered from the normalized data set (124 data points). The program data set consisted of 27
normalized program-level data points. The CSCI data set consisted of 93 normalized CSCI-
level data points. The one-CSCI data set consisted of 4 normalized, one-CSCI program-level
data points. Table 4-10 illustrates how the data was filtered from the NCCA Raw Database.32

Program CSCI 1CSCI
CSCI? = N

CSCI Count ≠ 1
CSCI? = Y CSCI? = N

CSCI Count = 1
Table 4-10: Program, CSCI, and 1CSCI Data Sets

RESULTS

The software development productivity for CSCI-level development efforts was statistically
equal to that for program-level development efforts. The software development productivity for
one-CSCI program-level development efforts was statistically equal to that for both CSCI-level
and program-level development efforts. However, the one-CSCI data set consisted of only four
data points, which is probably too small a data set to be conclusive. Table 4-11 provides a
summary of all Level Two results and corresponding statistics. These results can also be found
in Appendix C.

Metric Efactor # of Data Points Average Productivity (Hours/ESLOC) CV Test Equal?
Program
CSCI

0.07
0

27
93

1.726
2.102

68%
88%

t-test

Yes

1CSCI
Program

0.28
0.07

4
27

1.762
1.726

3%
68%

Mann-Whitney

Yes

1CSCI
CSCI

0.28
0

4
93

1.762
2.102

3%
88%

Mann-Whitney

Yes

Table 4-11: Level Two Statistical Results

32 In addition to the attributes listed in Table 4-6, the attributes listed in Table 4-8 (Normalized Data set) were also used as filters to
create the data sets used for this analysis.

Section 4 – Effort Analysis: Significant Drivers

4 - 12

4.3.3 LEVEL THREE (PROGRAM) AND LEVEL FOUR (CSCI)

The Level Three analysis tested lower-level attributes for the program-level and the Level Four
analysis tested lower-level attributes for the CSCI-level. The results from both analyses are
summarized in Appendix C. Based on the Level Two results, Level Three and Four data sets
could have been combined into one data set. However, they were kept separate in order to
support the regression analysis, discussed in Section 5 - Effort Analysis: Normalized
Regressions.

NCCA performed tests on the Level Three and Level Four data sets to determine whether code
condition, platform, mission area, software class, status, mode, language, or size drives
productivity for the program- and CSCI-levels, respectively.

METHODOLOGY

The following discusses the rationale behind testing each attribute:

1) Code Condition: A completely new program or CSCI should be inherently more difficult to

develop than its complement because there is no completed product, not even designs or
algorithms, to reuse. On the other hand, a program or CSCI that is not hundred percent
new should be inherently simpler to develop because there exists some software product
(i.e. document or source code) to reuse. Therefore, developing a line of reused code
(modified, rehosted, or verbatim) should be more productive than developing a line of new
code. One hundred percent new data points versus not hundred percent new data points
were tested to verify this.

2) Platform: Air versus non-air data points and ground versus ship data points were tested to

determine whether platform type drives productivity. Because air systems have more
physical constraints than non-air systems, the productivity to develop software for air
systems may be significantly lower. Ship versus ground systems were tested to ensure that
any differences found between air and non-air systems were not due to differences in non-
air systems (i.e., differences between ship and ground systems). Additionally, because ship
systems have more physical constraints than ground systems, the software development
productivity for ship systems may be significantly lower.

3) Mission Area: C3 software is the component of weapon system software that

communicates, assimilates, coordinates, analyzes, interprets information, and provides
decision support for military commanders. It provides instantaneous situation assessment,
allowing for advantageous, timely positioning and decision making [15]. Because C3
systems are more software dependent, than non-C3 systems, their software development
productivity may be lower.

4) Software Class: System software is designed for a specific software system, or family of

software systems, to facilitate its development, operation, and maintenance [15].
Application software is specifically developed for the functional use of a computer system.
Examples are battle management, weapons control, and database management software
[15]. Due to these differences, the development productivity for system software may be
significantly lower than for application software.

Section 4 – Effort Analysis: Significant Drivers

4 - 13

5) Software Status: Operational software is embedded in the system and is critical for
mission accomplishment, while non-operational software is typically simulation or support
code used to generate and test the operational software. Operational code was defined by
reference [16] as the code delivered to the customer for end use. Non-operational software,
which is typically not delivered, does not have to undergo the same level of rigor or
documentation as operational software. This was also the case in some programs that
reference [5] surveyed. Traditionally, code counting conventions like DSI included only
delivered SLOC. If non-delivered SLOC (like test drivers) are written with the same level of
care as the delivered software, references [5], [16], and [17] recommend they be counted as
well.

For some programs NCCA reviewed within the source database, there was almost as much
non-operational code as operational. None of the source databases explicitly tracked the
effort associated with operational versus non-operational code. If the programs contained
both types of code, but only the operational code was counted, then the effort associated
with developing the non-operational code would be assigned to the operational code, thus
increasing the overall cost per line of code for the entire program. Also, if the historical
programs contained a mix of operational and non-operational code that was significantly
different from today's mix, then inaccurate results will be obtained. Software status was
tested to determine if these differences do in fact affect productivity.

6) Software Mode: This attribute is based on the original COCOMO model definition (see

reference [5]) and attempts to account for the difficulties encountered when the software is
required to adhere to strict system requirements. Embedded mode software is
characterized by tight constraints and is usually forced to comply with the specification of the
system. Therefore, changing the requirements of the system in order to solve software
problems is difficult. With the advent of cheaper memory and faster processors, there is
room in today’s software to relax the constraints on software. However, there are some
programs that will continue to push the performance envelope. Based on this rationale, the
development productivity for embedded mode software may be lower than for semi-
detached or organic mode software.

7) Language: In the past, DoD had mandated the use of Ada to standardize software

development. DoD anticipated that standardization would result in significant savings in
personnel, training, software reuse, and tools [15]. Ada and non-Ada data sets were tested
to determine whether these anticipated savings have actually been realized.

8) Size: Small versus large programs were tested to determine whether software size drives

productivity. In a large program, it is possible that the programmers become more
productive as they learn more about the program and the programming language. This may
make larger programs more productive. On the other hand, a small program may be simpler
or easier to manage and, therefore, more productive. Due to the uncertainty of how
productivity is impacted by program size, the small and large program data sets were tested
for significance.

To determine whether code condition, platform, mission area, software class, status, mode,
language or size are significant productivity drivers, 17 data sets were developed for both the
Level Three and Level Four analyses. Since one-CSCI programs were statistically equal to
both CSCIs and programs, the four one-CSCI data points were added to both the program and

Section 4 – Effort Analysis: Significant Drivers

4 - 14

the CSCI data sets for analysis. The 17 data sets used in the Level Three analysis were filtered
from the program and one-CSCI data sets (31 data points), and the 17 data sets used in the
Level Four analysis were filtered from the one-CSCI and one-CSCI data sets (97 data points),
as demonstrated in Figure 4-6:

Normalized

124

CSCI
93

1CSCI
4

Program
27

}

}

Datasets used for Level Four Filters

Datasets used for Level Three Filters

Figure 4-6: Level Three and Level Four Data Sets

Table 4-12 identifies the individual data sets, the corresponding number of data points within
each data set, and the data filters utilized.

Attribute Data Set Level Three (Program) Level Four (CSCI) NCCA Raw Database
Filter

Code Condition 100% New
<100% New

8
23

32
65

New = 1
New ≠ 1

Platform Ship
Ground
Air

2
22
1

52
25
3

Platform = Ship
Platform = Ground
Platform = Air

Mission Area C3
Non-C3

11
20

32
65

Mission = C3
Mission ≠ C3

Software Class System
Application

1
5

18
57

SWClass = Sys
SWClass = App

Software Status Operational
Non-Operational

17
6

86
8

Status = Op
Status ≠ Op33

Software Mode Embedded
Non-Embedded

11
20

80
17

Mode = Em
Mode ≠ Em

Language Ada
Non-Ada

7
24

49
48

Lang1 = Ada
Lang1 ≠ Ada

Size Small
Large

 1534
16

 4935

48

Table 4-12: Level Three and Level Four Data Sets

33 Four additional data points must be eliminated manually because LOTUS will not filter them. The four data points are NCCA -417,
NCCA-418, NCCA-426, and NCCA -454. These must be eliminated from the data set because they contain a mixture of operational
and non-operational software.
34The program + 1CSCI data set was split in half according to program size (measured in ESLOC). An Efactor of 0.07 minimized
the CV and was applied to each data point in the program data set, converting SLOC to ESLOC. The 15 smallest programs were
designated the small data set, and the 16 largest programs were designated the large data set. The split was approximately 28,000
ESLOC.
35The CSCI + 1CSCI data set was split in half according to program size (measured in ESLOC). An Efactor of zero minimized the
CV and was applied to each data point in the data set, converting SLOC to ESLOC. The 49 smallest programs were designated the
small data set, and the 48 largest programs were designated the large data set. The split was approximately 16,000 ESLOC.

Section 4 – Effort Analysis: Significant Drivers

4 - 15

Data points were eliminated from the program or the CSCI data sets if there was a blank in the
specific field being filtered. For example, the resulting data sets for the platform sort (program-
level) consisted of only 25 of the 31 data points (2 ship, 22 ground, and 1 air). The six missing
data points were eliminated because there were blanks in each of the six programs’ Platform
Field (i.e., for six programs, it was unknown whether the software was developed for a ship,
ground or air program).

RESULTS

1) Code Condition

Level Three (Program): The software development productivity for a program with 100 percent
new code was statistically lower than that for a program with less than 100 percent new code.
The underlying data sets were fairly similar, although the “less than 100% New” data set was
composed of more simulation and semi-detached software, while the “100% New” data set was
composed of more C3 and embedded mode software. These differences in the underlying data
sets were not as pronounced as in some of the other data sets tested (i.e., the “less than 100%
New” data set had some C3 software, and the “100% New” data set had some semi-detached
software). The “less than 100% New” data set was almost three times more productive than the
“100% New” data set. Based on these results, 100 percent new programs appear to be more
complex at the program-level.

Level Four (CSCI): The software development productivity for CSCIs with 100 percent new
code was statistically lower than that for CSCIs with less than 100 percent new code. In
contrast to the Level Three analysis, there were no major underlying data set differences that
could have been driving this result. Since the CSCI-level result was consistent with the Level
Three (program-level) result, it was concluded that code condition is a productivity driver. Table
4-13 provides a summary of results and corresponding statistics for both Level Three and Level
Four code condition tests:

Level Attribute Efactor Hours/ESLOC CV Test Equal?
Program 100% New

<100% New
None
0.44

2.485
0.856

43%
61%

Mann-Whitney

No

CSCI 100% New
<100% New

None
0.02

2.807
1.665

96%
59%

t-test

No

Table 4-13: Level Three and Level Four Statistical Results (Code Condition)

2) Platform

Level Three (Program): There were insufficient ship (two) and air (one) data points to test;
therefore, a determination could not be made as to whether platform is a productivity driver at
the program-level.

Level Four (CSCI): There were insufficient air (three) data points to test, so a determination
could not be made as to whether air versus non-air platform is a significant productivity driver at
the CSCI-level.

The software development productivity for ground CSCIs was statistically lower than that for
ship CSCIs. However, the result may be due to differences in the underlying data sets. The
ship data set was mostly Ada, anti-submarine warfare, application, embedded mode software,

Section 4 – Effort Analysis: Significant Drivers

4 - 16

while the ground data set was fairly well distributed. Additionally, the ship data set was
composed primarily of verbatim code (51 percent on average), while the ground data set was
composed primarily of new code (92 percent on average).

To make the code condition of the two data sets similar, the test was conducted again with all
100 percent new data points deleted. This time, the productivities of the two data sets were
statistically equal and, in contrast to the previous results, ground CSCIs were more productive
than ship CSCIs.

Although NCCA attempted to normalize the data sets by sorting out 100 percent new CSCIs,
the two resulting underlying data sets were still quite different. The actual difference in
productivity between the ship and ground data sets could not be isolated due to other
differences in the underlying data sets. Therefore, a determination of whether ground versus
ship platform is a significant productivity driver for the CSCI-level could not be made.
Table 4-14 provides a summary of results and corresponding statistics for both Level Three and
Level Four platform tests:

Level Attribute Efactor Hours/ESLOC CV Test Equal?
CSCI Ground

Ship
0

0.02
2.655
1.522

83%
53%

t-test

No

CSCI Ground (<100% New)
Ship (<100% New)

0.02
0.02

1.208
1.536

60%
53%

Mann-Whitney

Yes

Table 4-14: Level Three and Level Four Statistical Results (Platform)

3) Mission Area

Level Three (Program): The software development productivity for C3 software was statistically
lower than that for non-C3 software for the program-level. However, the result may have been
due to other differences in the underlying data sets. The C3 data set consisted of more
embedded mode programs, which could have decreased the average productivity. The non-C3
data set consisted almost entirely of support software programs, which could have increased
the average productivity.

Additionally, the code condition of the two data sets was quite different. The C3 data set was 82
percent new (and zero percent verbatim) on average, while the non-C3 data set was only 53
percent new (and 21 percent verbatim) on average. This difference could have increased the
productivity of the non-C3 data set, while decreasing the productivity of the C3 data set.
It is impossible to tell whether the results were truly due to mission area differences (C3 versus
non-C3), or were driven by other data set differences. Therefore, a determination could not be
made as to whether mission area is a productivity driver for the program-level.

Level Four (CSCI): The software development productivity for C3 software was statistically
lower than that for non-C3 software for the CSCI-level. However, similar to the program-level
analysis, this result may have been due to other differences in the underlying data sets. The C3
data set was composed primarily of new code (on average 88 percent new) and the non-C3 data
set was more evenly distributed (on average 51 percent new code and 49 percent reused code).

To eliminate the differences in code condition, the test was conducted again with the 100
percent new CSCIs. In contrast to the previous results, the productivity to develop C3 software
was statistically equal to that for non-C3 software. However, there continues to be uncertainty

Section 4 – Effort Analysis: Significant Drivers

4 - 17

with this result due to additional differences in the underlying data sets. The 100 percent new
C3 data set was composed almost entirely of embedded mode software, while the 100 percent
new non-C3 data set was primarily composed of non-embedded mode software. This could
possibly have decreased the average productivity of the C3 data set, while increasing that of the
non-C3 data set.

Due to the underlying data set differences, it was impossible to determine whether mission area
is a productivity driver for the CSCI-level. Table 4-15 provides a summary of results and
corresponding statistics for both Level Three and Level Four mission area tests.

Level Attribute Efactor Hours/ESLOC CV Test Equal?
Program C3

Non-C3

0.15
0.18

2.411
1.003

44%
52%

Mann-Whitney

No

CSCI C3
Non-C3

0.02
0

2.740
1.767

74%
90%

t-test

No

CSCI C3 (100% New)
Non-C3 (100% New)

None
None

2.785
2.874

79%
140%

Mann-Whitney

Yes

Table 4-15: Level Three and Level Four Statistical Results (Mission Area)

4) Software Class

Level Three (Program): There were only one system and five application data points to test;
therefore, a determination could not be made as to whether software class is a significant
productivity driver for the program-level.

Level Four (CSCI): The software development productivity for system software was statistically
lower than that for application software for the CSCI-level. However, there is uncertainty
associated with this result due to differences in the code condition of the underlying data sets.
The system data set was composed primarily of new code (on average, 83 percent new), while
the application data set was more evenly distributed (54 percent new code and 46 percent
reused code). This may have decreased the productivity of system CSCIs, while increasing that
of application CSCIs. In addition, the application data set was composed primarily of Ada
programs that may also have skewed the results.

To decrease the differences in code condition between the two data sets, the test was
conducted again with only 100 percent new CSCIs. Again, the software development
productivity for system software was statistically lower than that for application software. The
underlying data sets were similar, although both data sets were almost entirely composed of
programs from the MITRE Non-Ada Database. Based on these test results, software class is a
productivity driver for the CSCI-level. Table 4-16 provides a summary of results and
corresponding statistics for both Level Three and Level Four software class tests.

Level Attribute Efactor Hours/ESLOC CV Test Equal?
CSCI System

Application
0
0

3.587
1.850

88%
64%

Mann-Whitney

No

CSCI System (100% New)
Application (100% New)

None
None

4.241
2.684

91%
53%

Mann-Whitney

No

Table 4-16: Level Three and Level Four Statistical Results (Software Class)

Section 4 – Effort Analysis: Significant Drivers

4 - 18

5) Software Status

Level Three (Program): The software development productivity for operational software was
statistically equal to that for non-operational software for the program-level. However, there was
a possible mapping problem concerning this field in the NCCA Raw Database. Because this
classification was not typically reflected in the source databases, NCCA was required to
subjectively map programs into the operational or non-operational categories. Therefore, the
possibility exists that some of the data points were incorrectly mapped. Due to the uncertainty
involved in the actual classification of the data points, a conclusive determination could not be
made as to whether software status is a significant productivity driver for the program-level.

Level Four (CSCI): The software development productivity for operational software was
statistically equal to that for non-operational software for the CSCI-level. However, this result
may be due to other differences in the underlying data sets. The operational data set had many
Ada CSCIs and was composed of 61 percent new code and 34 percent verbatim code, on
average. The non-operational data set had no Ada CSCIs and was composed of 88 percent
new code, on average (no verbatim code). This difference in the composition of the code
condition may have increased the average productivity of the operational data set, and
decreased the average productivity of the non-operational data set.

To determine whether the results were actually a reflection of differences in code condition and
not software status, the test was conducted again with 100 percent new CSCIs. This time, the
productivity to develop operational software was statistically lower than that to develop non-
operational software. However, this result also may have been skewed by additional
differences in the underlying data sets.

To determine whether the programming language, Ada in particular, was driving the
productivities rather than software status, the two data sets were tested again with all Ada data
points eliminated from the data sets. The two data sets were statistically equal.

In addition to these inconclusive results, the possibility exists that some of the data points were
incorrectly mapped, as in the Level Three analysis. Due to the uncertainty involved in the actual
classification of the data points, as well as the inconclusive results, a valid determination could
not be made as to whether software status is a significant productivity driver for the CSCI-level.
Table 4-17 provides a summary of results and corresponding statistics for both Level Three and
Level Four software status tests.

Level Attribute Efactor Hours/ESLOC CV Test Equal?
Program Operational

Non-Op
0.22
0.22

1.013
0.849

50%
39%

Mann-Whitney

Yes

CSCI Operational
Non-Op

0
0

2.182
1.480

86%
81%

Mann-Whitney

Yes

CSCI Op (100% New)
Non-Op (100% New)

None
None

3.271
1.235

86%
106%

Mann-Whitney

No

CSCI Op (Non-Ada)
Non-Op (Non-Ada)

0
0

2.985
1.480

83%
81%

Mann-Whitney

Yes

Table 4-17: Level Three and Level Four Statistical Results (Software Status)

Section 4 – Effort Analysis: Significant Drivers

4 - 19

6) Software Mode

Level Three (Program): The software development productivity for embedded mode software
was statistically lower than that for non-embedded mode software. For the program-level,
software mode is a productivity driver and should be considered when estimating productivity.

Level Four (CSCI): The software development productivity for embedded mode software was
statistically lower than that for non-embedded mode software for the CSCI-level. This was
consistent with the Level Three (program-level) result. Therefore, software mode is a
productivity driver and should be considered when estimating productivity.

Table 4-18 provides a summary of results and corresponding statistics for both the Level Three
and Level Four software mode tests.

Level Metric Efactor Hours/ESLOC CV Test Equal?
Program Embedded versus

Non-Embedded
0.15
0.09

2.223
1.322

41%
71%

Mann-Whitney

No

CSCI Embedded versus
Non-Embedded

0
0.36

2.250
0.846

86%
47%

Mann-Whitney

No

Table 4-18: Level Three and Level Four Statistical Results (Software Mode)

7) Language

Level Three (Program): The software development productivity for programs written in Ada was
statistically equal to that for programs written in another HOL. The two data sets were
statistically equal despite the finding that the average productivity of Ada programs was twice as
high as non-Ada programs (0.977 Hours/ESLOC for Ada and 1.807 Hours/ESLOC for non-Ada).
However, this finding should be viewed with caution. The large difference in average
productivities could be attributed to other differences in the underlying data sets. The Ada data
set was composed entirely of support software, 100 percent HOL, non-embedded mode, and
simulation programs. In addition, the Ada data set consisted on average of only 36 percent new
code, 28 percent modified code, and 36 percent verbatim code. All of these attributes may have
increased the average productivity of the Ada data set. The non-Ada data set was composed of
C3 mission, radar and simulation programs, which were primarily non-embedded mode. The
non-Ada data set was composed on average of 71 percent new code and only seven percent
verbatim code, which also may have contributed to a lower average productivity for this data
set. Based on these results, a defensible conclusion could not be made as to whether Ada was
a productivity driver for the program-level.

Level Four (CSCI): The software development productivity for CSCIs written in Ada was
statistically higher than that for CSCIs written in some other HOL. However, there is uncertainty
in this result due to differences in the underlying data sets. The Ada data set consisted almost
entirely of embedded mode, anti-submarine warfare, and application CSCIs , while the non-ADA
data set was primarily embedded mode with a C3 mission. Based on these results, a valid
conclusion as to whether Ada was a productivity driver for the CSCI-level cannot be made.

Table 4-19 provides a summary of results and corresponding statistics for both the Level Three
and Level Four language tests.

Section 4 – Effort Analysis: Significant Drivers

4 - 20

Level Attribute Efactor Hours/ESLOC CV Test Equal?
Program Ada

Non-Ada
0.3
0.03

0.977
1.807

29%
67%

Mann-Whitney

Yes

CSCI Ada
Non-Ada

0.02
0

1.512
2.626

55%
88%

t-test

No

Table 4-19: Level Three and Level Four Statistical Results (Language)

8) Size

Level Three (Program): The software development productivity for small programs was
statistically equal to that for large programs. For the program-level, size was not a productivity
driver and does not need to be considered when estimating software development productivity.

Level Four (CSCI): The software development productivity for small CSCIs was statistically
equal to large CSCIs. This was consistent with Level Three (program-level) results. Therefore,
program size was not a productivity driver and does not need to be considered when estimating
software development productivity.

Although software size does not appear to be a productivity driver, there may possibly be a
critical size value (other than the mean) which will be explored in Section 5 - Effort Analysis:
Normalized Regressions.

Table 4-20 provides a summary of results and corresponding statistics for both Level Three and
Level Four software size tests.

Level Attribute Efactor Hours/ESLOC CV Test Equal?
Program Small

Large
0.07
0.07

1.630
1.857

48%
72%

Mann-Whitney

Yes

CSCI Small
Large

0
0

2.124
2.066

83%
91%

t-test

Yes

Table 4-20: Level Three and Level Four Statistical Results (Size)

4.4 CONCLUSIONS

This section discusses those attributes NCCA identified as productivity drivers. The decision as
to whether an attribute is a driver was based on both statistical test results and on the analyses
of the underlying data sets.

Based on the Level One analysis, the following attributes are statistically significant productivity
drivers and should be considered when estimating software development productivity.

1) Mission (MIS versus Weapon System)
2) Counting Convention (Physical versus Logical)
3) Language (Assembly versus HOL)
4) Phasing (SSR through FQT versus SDR through FQT)

Since the productivities of CSCI-level, program-level, and one-CSCI-level programs were
statistically equal, there were no productivity drivers identified from the Level Two analysis.
Table 4-21 is a summary of the Level Three and Level Four results. A “Yes” indicates the
attribute was a productivity driver, a “No” indicates the attribute was not a productivity driver,

Section 4 – Effort Analysis: Significant Drivers

4 - 21

and a “?” indicates that a defensible conclusion could not be made as to whether or not the
metric was a productivity driver. NCCA’s final criterion for concluding that an attribute was a
productivity driver was significance at both the program- and CSCI-levels. The attributes that
satisfied this criterion are indicated by a checkmark (ü).

Attribute Level 3 Analysis
(Program-Level)

Level 4 Analysis
(CSCI-Level)

Significant at Both Levels?

Code Condition Yes Yes ü
Platform Insufficient Data ?
Mission Area ? ?
SW Class Insufficient Data Yes
SW Status ? ?
SW Mode Yes Yes ü
Language ? ?
Size No No

Table 4-21: Level Three and Level Four Statistical Results (Summary)

In summary, at a minimum, the analyst should determine the domain or higher-level mission
(MIS versus weapon systems), counting convention, language, phasing, code condition, and
software mode of the program to be estimated. Due to lack of data, a defensible conclusion
could not be made as to whether any of the other attributes are productivity drivers. Although
the other attributes were not definitively identified as productivity drivers, to support future
analytical efforts, an attempt should also be made to determine the platform type, mission area,
software class, and software status of the program being estimated.

4.5 WEAKNESSES

The main weakness of this analysis was the lack of data. Of the 457 data points in the NCCA
Raw Database, only 185 were fully defined (i.e., all attributes used in this analysis were defined
in the database) and only 95 of those fully defined data points were normalized (i.e., weapon
systems, logical, greater than 70 percent HOL, SDR through FQT, code condition and mode
known). Therefore, many data points could not be used in the analysis simply due to
incomplete information. This limitation was even more pronounced at the program-level, where
only 23 of the 31 normalized data points were completely defined and useable in the entire
Level Three analysis.

Another weakness of this analysis was the quality of data in the underlying data sets. Because
these programs and the database were not developed in a controlled environment, NCCA was
often unable to completely isolate the productivity drivers. Every attempt was made to identify
other possible drivers; however, with so many holes in the data sets, it was often impossible to
do.

4.6 FUTURE EFFORTS

In the future, NCCA plans to collect more data to enhance the analysis. The additional data will
be used to substantiate results from all four levels of the analysis, and to further investigate
areas of uncertainty. Additional data will also be used to complete the analysis for those areas
that were not investigated due to insufficient data. An effort will be made to adequately define

Section 4 – Effort Analysis: Significant Drivers

4 - 22

all new data so that the underlying data sets can be completely understood and any other
possible drivers identified.

NCCA was unable to completely isolate an attribute to determine whether it was a productivity
driver (e.g., Ada versus platform versus contractor). It was impossible to determine whether two
or more attributes were mutually independent or dependent on each other. In the future, NCCA
also plans to perform multivariate analyses on the data to determine relationships between
software attributes with respect to productivity.

Section 5 - Effort Analysis: Normalized Regressions

5 - 23

EFFORT ANALYSIS:
NORMALIZED REGRESSIONS

5.1 INTRODUCTION

Based on the conclusions of the previous section, NCCA normalized the raw database in order
to conduct regression analyses. The product of these analyses is a set of standard effort
estimating relationships intended for use if, and only if, the analyst is unable to collect
contractor-specific data relevant to the software development effort being estimated.
Examples of cases where it is appropriate to use the standard relationships are: 1) if the name
of the future software development contractor is unknown and 2) if the program being estimated
is so early in development that program requirements are ill defined and therefore qualified
contractors have yet to be identified.

This section of the handbook serves three purposes: 1) to summarize the NCCA Raw
Database in its normalized form; 2) to discuss the analytical approach used to produce the
estimating relationships; and 3) to present the estimating relationships and their application
rules. This section of the handbook is comprised of the following subsections:

• Review of the NCCA Normalized Software Effort Database
• Partitioning the Data
• Analytical Approach
• Regression Results
• Evaluation of Program-Level versus CSCI-Level Regressions
• Recommendations
• Conclusions
• Future Efforts

5.2 REVIEW OF THE NCCA NORMALIZED SOFTWARE

EFFORT DATABASE

As previously discussed, NCCA used the productivity drivers identified in Section 4 - Effort
Analysis: Significant Drivers to filter the NCCA Raw Database into a normalized database,
hereafter referred to as the NCCA Normalized Database. Table 5-1 again shows how the
number of data points diminishes as each normalization criterion is applied.

The normalization process eliminated a significant number of program- and CSCI-level data
points. For the program-level, only 31 of 151 data points remain. With so few points, it was
difficult to find meaningful subsets of data. A fairly large number of CSCI-level data points still
remain, but the next section will show how the CSCI data points are concentrated into specific
areas.

5

Section 5 - Effort Analysis: Normalized Regressions

5 - 24

 Initial Number of Data Points
 Program CSCI

Start: Top-Level 151 32936
î
Normalizing Factors Number of Data Points

Remaining
 Program CSCI
Mission = Weapon System 105 236
î
Code Count = Logical 56 185
î
HOL ≥ 70% 47 146
î
Scope of Effort = SDR through FQT 32 100
î
Code Condition Known 31 97
î
Development Mode Known 31 97
î
Hours/man-month = known 31 97
Final NCCA Normalized Database 31 9737

 Table 5-1: Arriving at the NCCA Normalized Database

The final program-level NCCA Normalized Software Effort Database consists of 31 data points.
The start dates were not provided for all data points. However, the start dates provided were
from 1972 through 1984. These software developments were written in FORTRAN, Ada, and
JOVIAL. The SLOC range is from 9 to 1,113 KSLOC. The total effort ranged from 9 to 10,976
man-months. A majority of the program-level data points are semi-detached, while some
embedded and organic modes are represented. This database includes various missions, such
as: radar, command, control and communications (C3), and simulation, which were installed on
both ground and ship platforms. The following are the strengths associated with the program-
level database: 1) SEL data points reflect impacts of continuous process improvements; 2) Ada
programs are well represented; 3) all development modes are well represented; 4) the size
range is robust; and 5) the code condition is robust (modified and verbatim code well
represented). The following are the weaknesses associated with the program-level database:
1) only three database sources are represented (Implication - database robustness may be
compromised); 2) there are only 31 data points remaining after the normalization process; 3) the
data points are primarily old; 4) blank fields in the database (# of CSCIs, start dates ...) prevent
the application of innovative techniques; and 5) many applications are missing (missiles, sonars,
etc.).

The final CSCI-level NCCA Normalized Software Effort Database consists of 97 data points.
Similar to the program-level database, the start dates were not provided for all data points.
However, the CSCI start dates provided were from 1972 through 1991. These software
developments were written in FORTRAN, Ada, CMS-2, JOVIAL, ATLAS and C. The SLOC
range is from 0.411 to 492 KSLOC. The total effort ranged from 2.1 to 5,007 man-months. A
majority of the CSCI-level data points are embedded, while some semi-detached and organic
modes are represented. This database includes various missions, such as: radar, Anti-

36The analysis in Section 4 – Effort Analysis: Significant Drivers proved that one-CSCI programs can be included with CSCI-
level data points; therefore, the initial CSCI-level data set includes 23 one-CSCI data points.
37 The analysis in Section 4 – Effort Analysis: Significant Drivers proved that one-CSCI programs can be included with CSCI-
level data points; therefore, the final normalized CSCI-level data set includes 4 one-CSCI data points.

Section 5 - Effort Analysis: Normalized Regressions

5 - 3

Submarine Warfare (ASW), C3, simulation and missile, which were installed on ground, air and
ship platforms. The following are the strengths associated with the CSCI-level database: 1) the
total number of data points remaining, after the normalization, are 97; 2) new processes are
represented; 3) five database sources are represented; 4) Ada is well represented; and 5) the
size range is robust. The following are the weaknesses associated with the CSCI-level
database: 1) a large amount of the data points are from one program; 2) 46 of 50 Ada data
points are from one program; 3) code condition is primarily new and verbatim (limited modified
code); and 5) the number of programs is unknown (SMC doesn’t link CSCIs to Programs).

The normalization process eliminated a significant number of the source databases. Entire
databases were eliminated because of one or two key differences. Table 5-2 shows which
source databases remained after normalization and why the others were deleted.

There are only three source databases included in the NCCA Normalized Database at the
program-level, and only five source databases included at the CSCI-level. SMC was not well
represented at the program-level, while the MITRE Non-Ada Database and Navy Internal data
overwhelmed the other sources at the CSCI-level.

 Number of Data Points
Source Database Code Program CSCI Reason for Database Exclusion

MITRE Non-Ada 1 13 38
MITRE Ada 2 0 0 Effort does not reflect SDR to FQT
SMC 3 4 6
NASA SEL 4 14 4
Navy Internal 5 0 45 Program-level data points utilized physical SLOC counting convention
Silver SASET 6 0 0 Counting convention, hours/man-month, and scope of effort unknown
REVIC Recalibration 7 0 0 Hours/man-month for data points from non-SMC sources could not be

verified
IITRI 8 0 4 Did not contain program-level data

Table 5-2: Normalized Database by Source Database

The remaining source databases were not homogeneous. As Table 5-3 shows, each source
database had its own concentration of characteristics. For instance, most of the C3 applications
came from the MITRE Non-Ada Database. Most databases focused on areas of the sponsor’s
interest and likely reflected a set of software developers specific to those areas of interest. In
most cases NCCA did not have the original developer’s name, and, thus, could not determine
whether a source database represented a set of diverse contractors.

Source Database Mission Language Age Mode Other Comment
1. MITRE Non-Ada C3, Radar Fortran, Jovial, CMS-2, C 10 to 25 yrs Embedded

Semi-
Detached

3. SMC C3, MIS, Missile Ada, Fortran, Jovial, C 3 to 17 yrs Embedded
Semi-Detached
Organic

4. NASA SEL SIM Fortran, Ada 6 to 12 yrs Semi-Detached
Organic

Non-DoD Ada data
points are program-
level

5. Navy Internal ASW Ada, CMS-2 < 8 yrs Embedded Ada data points are
CSCI-level

8. IITRI C3 Ada > 7 yrs38 Embedded

Table 5-3: Key Aspects of Remaining Source Databases

38Although dates were not given, the IITRI report was published in 1989. Therefore, since no data point could have started after
1989, the data is at least seven years old.

Section 5 - Effort Analysis: Normalized Regressions

5 - 4

5.3 PARTITIONING THE DATA

After the NCCA Normalized Database was created, the next step was to partition and examine
the data. With 73 fields for each record in the NCCA Raw Database, a tremendous number of
partitions could be made. However, some partitions were either not possible or less useful
and/or more subjective than others. For instance, because it is widely believed that developer
capability is a productivity driver, it was desirable to partition the data by software developer
(i.e., contractor). Unfortunately, most of the data did not provide the software developer's name.
If the data did not support a partition at the program-level, it was also not partitioned at the
CSCI-level, and vice versa. Thus, consistency was maintained between the program-level and
CSCI-level analyses.

Based on a preliminary analysis of the data and a statistical test of the means of the productivity
metrics (as documented in Section 4 - Effort Analysis: Significant Drivers), NCCA generated
seven partitions of the data: one top-level and six lower-levels, as listed below:

1) Top-Level
2) 100 Percent New
3) Not 100 Percent New
4) Embedded
5) greater than 75 percent reuse;
6) greater than 50 percent reuse; and
7) greater than zero and less than or equal to 50 percent reuse.

The first four partitions are a direct result of the significant driver analyses, while the last three
are based on current software literature and research. The SEL analysis [10] indicates there is
a critical point where the savings due to reuse become significant. Barry Boehm’s revised
COCOMO model (COCOMO II) also addresses this issue. Therefore, NCCA subjectively
defined the last three partitions. Table 5-4 provides summary information about the seven
partitions.

 Number of Data Points

Partition Program CSCI

Top-level 31 97

100% New 8 32

Not 100% New 23 65

Embedded 11 80

Reuse > 75% 8 10

Reuse > 50% 9 39

0 < Reuse ≤ 50% 14 26

Table 5-4: Summary of Data Partitions

5.4 ANALYTICAL APPROACH

Section 5 - Effort Analysis: Normalized Regressions

5 - 5

Almost all software effort estimating models start with a core estimating equation, usually a
function of the size of the software. The traditional form of the equation is a non-linear
relationship of the form:

Effort = a * Sizeb

where a is some constant, b is the exponent, size is expressed in SLOC or ESLOC, and effort is
expressed in man-months or man-hours. Historically, the exponent b ranged from 0.8 to 1.4. If
the exponent is greater than one, as the size of the software increases, the associated effort
also increases (i.e., the next line of code will be more expensive than the previous line of code).
This effect is known as a diseconomy of scale. If the exponent is less than one, the opposite is
true (i.e., the next line of code will be cheaper than the previous line of code), implying an
economy of scale. There are varying opinions concerning whether software can ever truly enjoy
economies of scale. One reason cited for diseconomies of scale is that as size increases, the
complexity of the software increases. However, modern software development practices stress
modularization. Thus, while the whole may be complex, each piece, will be less complex.

Reference [18] suggests that team dynamics also play a role. As the size of a team grows,
more time is spent communicating along an increasing number of communication paths among
team members, resulting in less time for developing software. The effort associated with
communication could grow faster than the associated gain in productivity by adding staff (a
diminishing return). On the other hand, as more contractors use Ada to develop software,
experts agree that the increased usage of reused code should positively affect productivity.
Thus, if the program is developed to promote reuse of large portions of code, the program may
experience economies of scale.

Two forms of simple least squares regression were performed for each data partition. The first
form was as follows:

Estimated Effort = a * [New SLOC + (Efactor * Reused SLOC)]b

where Efactor is a value between zero and one. The second form of the regression was:

Estimated Effort = a * [New SLOC + (Efactor1 * Modified SLOC) + (Efactor2 * Other SLOC)]b

Both of these equations use a log-log transformation. The difference between the two
equations is in the fidelity of the reused SLOC. In the first case, all SLOC that are reused are
grouped together; hence, they are equally weighted with the same Efactor. The equation with
two Efactors is more sensitive because it treats modified code separately from the other forms
of reused code (i.e., rehosted, translated, verbatim, etc.). This is based on the assertion that
modified SLOC would require more effort than other reused code types.

Similar to the methodology used in Section 4 - Effort Analysis: Significant Drivers, the
Efactors are iteratively derived using a special regression spreadsheet model. The model
performs a "tradeoff analysis". During the analysis, the model assigns the Efactor(s) a value
between zero and one, and solves for the x variable, ESLOC, for each point in the partition.

Section 5 - Effort Analysis: Normalized Regressions

5 - 6

When the regression is performed on this calculated ESLOC, the standard error and Predict
(20)39 are calculated.

The Efactor is then changed and the regression rerun. This continues until the standard error
and Predict (20) for all Efactor values, in increments of 0.01 between zero and one, have been
computed. The results are then analyzed to determine the value of the Efactor that produced
the regression with the lowest standard error. A second analysis is performed to determine
which Efactor produced the regression(s) with the highest Predict (20).

Figure 5-1 shows a typical graph produced by the regressions. This graph plots both the
standard error curve and the Predict (20) curve. This example is based on ESLOC with one
Efactor (i.e., combines all reused SLOC). The regression with the smallest error (left axis) of
0.62 occurred when the Efactor was 0.22. Therefore, with this set of data and this type of
regression (one variable), reused SLOC would require 22 percent of the effort that new SLOC
required. The 22 percent should be thought of as an average Efactor across all the different
types of reused code. This particular example's underlying data contained data points that had
modified SLOC and verbatim SLOC. The composition of the reused SLOC has a definite
influence on the Efactor.

The smooth line, which looks like a step function in Figure 5-1, is the Predict (20) line. The
Efactor that produced the maximum Predict (20) (right axis) of 29 percent was 0.02. Thus, the
Efactor (0.22) that gave the minimum standard error and had an associated Predict (20) of 16
percent, was not the same Efactor (.02) that gave the maximum Predict (20).

39Predict (20) is the percentage of time the total residuals are within 20 percent of the actual value. (See Appendix C for more details
on Predict (20) calculations.)

Section 5 - Effort Analysis: Normalized Regressions

5 - 7

0 0.2 0.4 0.6 0.8 1 1.2
0.6

0 . 6 5

0.7

0 . 7 5

0.8

0 . 8 5

0.9

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Efactor

Std Error P R E D (2 0)

Std Error

P R E D (2 0)

CER Tradeoff Analysis
ln (MM) = -6 .7 + 1 .1705 * ln (ESLOC)

Run#FIN1P:Program-Meth A

 Figure 5-1: Trace of Standard Error and Predict (20)

The standard error for the effort regression with an Efactor of 0.02, was 0.75. Thus, to achieve
an increase in Predict (20) from 16 to 29 percent, an increase in the standard error from 0.62 to
0.75 must also occurs. In some cases, this tradeoff in error is minimal. In other cases, like this
one, the tradeoff is substantial and not desirable. Additionally, after more detailed analysis, it
became apparent that to maximize the Predict (20), the statistical tools began trading off on the
number of data points within the different database sources. In other words, as shown in Figure
5-2, the data source with the greatest number of data points, which is most likely homogenous,
would drive the Predict (20). Due to the database tradeoff involved in the Predict (20)
calculations, NCCA preferred to minimize the standard error associated with a regression vice
maximizing the Predict (20).

A similar technique was utilized to calculate the minimum standard error and maximum Predict
(20) for the regression equations with two Efactors. However, due to the increased number of
variables, additional iterations had to be performed.

Section 5 - Effort Analysis: Normalized Regressions

5 - 8

Figure 5-2: Predict (20) Tradeoff

5.5 REGRESSION RESULTS

This section documents the three sets of regressions performed: traditional, non-traditional and
revised traditional.

1) Traditional regressions express effort (man-months) as a function of ESLOC with dummy

slopes or dummy constants. Efactors are used to convert SLOC to ESLOC.

2) Non-traditional regressions express effort in two forms: a) effort as a function of new SLOC

and reused SLOC; and b) effort as a function of total SLOC and one minus percent reused
SLOC (i.e., % new). The second approach discounts effort as more reuse code is used.
For these two approaches, Efactors are not used because the actual amount of code or the
percent of reused (modified, rehosted, translated, verbatim, etc.) SLOC is an independent
variable.

3) Revised traditional regressions combine the strengths of the traditional and non-traditional

regressions. Effort is a function of ESLOC and % reuse (through the use of an additional
dummy variable). This approach also uses Efactors to convert SLOC to ESLOC.

All equations presented below, where effort is in man-months, have been normalized to reflect
the 152 hours per man-month standard. Each set, including an analysis of the resulting
equations and the elimination process, will be discussed in more detail below.

P r e d 2 0 L i n e

= D a t a s o u r c e 1 , n = 1 4

= D a t a s o u r c e 2 , n = 4

= D a t a s o u r c e 3 , n = 4

S T D E r r o r L i n e

M
an

-M
o

n
th

s

S L O C

Section 5 - Effort Analysis: Normalized Regressions

5 - 9

5.5.1 TRADITIONAL REGRESSIONS

Traditional regressions express effort as a function of ESLOC. Additionally, dummy variables
are introduced into the model by way of dummy slopes and dummy constants. By using a
dummy variable, a second variable is introduced into the regression. The dummy variable takes
the value of zero or one depending on the observation. A dummy constant applies the same
impact to all programs, regardless of size, as illustrated in the following equation:

Effort = ()bESLOCa ∗ * e cD1

where D1 is a dummy constant variable.

In contrast, a dummy slope models the non-constant effect attributes have on programs of
varying sizes. In other words, a dummy constant applies the same impact (eD1c) to a program
regardless of size, while a dummy slope’s impact will change depending upon the size of the
program. The net effect of the dummy slope then becomes:

Effort = () cDb 1ESLOCa +∗

See Appendix C for a detailed discussion of dummy variables and their application.

For each of the seven data partitions identified earlier, an organized set of regressions was
attempted to derive the statistically significant effort regressions at both the program- and CSCI-
levels. Table 5-5 summarizes the different scenarios.

 Number of Data
Points

Dummy Variables

Subset Program versus
CSCI

100% New Embedde
d

ESLOC
>

Top-level 31 versus 97 ü ü ü
100% New40 8 versus 32 ü ü
Not 100% New 23 versus 65 ü ü
Embedded Only 11 versus 80 ü ü
Reuse > 75% 8 versus 10 ü ü
Reuse > 50% 9 versus 39 ü ü
0% < Reuse ≤
50%

14 versus 26 ü ü

Table 5-5: Summary of Regressions

NCCA used dummy slopes in the regressions instead of the more traditional dummy constants
because, statistically, the dummy slope outperformed the dummy constant. Additionally, NCCA
believes the impact of an attribute (e.g., code condition, mode) varies as the size varies (e.g.,
the impact of embedded mode may be much greater on a large program than on a small
program).

40ESLOC calculation is not applicable for this subset since the SLOC are new.

Section 5 - Effort Analysis: Normalized Regressions

5 - 10

As defined in Section 4 - Effort Analysis: Significant Drivers, only those variables which
were consistently significant at both the CSCI- and program-levels were utilized as dummy
variables. Therefore, the attributes represented by the dummy variables applied in the
regression runs were similar to those used in partitioning the data. The only dummy variable
that was not a criterion for data partitioning was “ESLOC>?”. This particular dummy variable
was applied to determine whether a critical size value (other than the median which was tested
in Section 4 - Effort Analysis: Significant Drivers) existed.

A total of 240 candidate traditional regressions were developed. Appendix D details each
regression. Some general findings about the regressions are:

• Net exponents (including dummy slopes) for program-level regressions ranged from 0.75 to

1.6, while net exponents for CSCI-level regressions ranged from 0.55 to 1.5.

• Program-level regressions typically had net exponents greater than one, while CSCI-level

regressions typically had net exponents less than one. However, the constant for the CSCI-
level regressions was usually greater (sometimes by a factor of ten) than that for the
program-level regressions.

• CSCI-level regressions exhibited greater variance than program-level regressions, possibly

because the CSCI regressions included more database sources, which were non-
homogeneous.

• Efactor weights for reused SLOC were greater at the program-level than at the CSCI-level.

This is probably due to the underlying composition of the program-level versus CSCI-level
databases (i.e., CSCI data consisted of reused code which was primarily verbatim, and
therefore, less complex while the program data did not).

• CSCI-level regressions with two Efactors generally exhibited a lower variance than

regressions with one Efactor. This effect was the exact opposite for program-level
regressions.

Once the 240 regressions were completed, undesirable (biased, inaccurate) regressions were
eliminated. Three rounds of elimination were performed to arrive at the final set of acceptable
regressions. The first round was very broad, while the last round was performed for very
specific reasons. A summary of each round of elimination follows.

5.5.1.1 Round One Eliminations

In this first round, all estimating relationships that did not have significant statistics were
eliminated. Significance was set at the 95 percent confidence level. Additionally, some of the
effort regressions had the same Efactor when optimized for minimum standard error and
maximum Predict (20); that is, the equations duplicated each other. All duplicate equations
were also eliminated during round one, leaving a total of 132 candidates.

Section 5 - Effort Analysis: Normalized Regressions

5 - 11

5.5.1.2 Round Two Eliminations

In this round, all remaining estimating relationships were investigated to determine if the form of
the equation (the coefficients and exponents) made technical sense. Several problems were
uncovered and are discussed in detail below.

Two Efactors: The set of regressions consisting of two Efactors had some drawbacks.
Efactor1 weighted modified SLOC while Efactor2 weighted the remaining reused (rehosted,
verbatim, or translated) SLOC. In many program-level regressions, the resulting relationships
estimated a higher weight for the remaining reused SLOC than for modified SLOC (i.e.,
Efactor2>Efactor1). This implied that modified SLOC were easier to develop than the remaining
reused SLOC. This did not make sense technically. Since most databases did not specifically
categorize reused SLOC, NCCA had to develop mapping guidelines to classify them in the
NCCA Raw Database. For instance, if a program consisted of zero percent redesign and
recode, NCCA mapped the associated SLOC into the verbatim field. It is possible that NCCA’s
mapping scheme was inaccurate. Although most of the CSCI-level regressions did not exhibit
this problem, the rules used to map their SLOC were the same as those used at the program-
level. Thus, if there is a mapping problem at the program-level, then there is also a problem at
the CSCI-level. Therefore, all regressions of the two Efactor form were eliminated. This
procedure eliminated 75 of the remaining 132 candidate equations, thus leaving 57 equations.

Critical ESLOC>?: Significant relationships were developed in which a critical size dummy
variable was determined. However, in some regressions, the dummy slope calculation was
based on only 2 or 3 data points. In other regressions, the resulting equation weighted the
dummy slope counterintuitively. For example, at the CSCI-level, a regression found 10,000
ESLOC to be the critical size value; however, anything smaller than 10,000 ESLOC was
estimated to be more expensive while anything greater was estimated to be less. This is
conceivable, if there is a given amount of level of effort required regardless of the size of the
program. However, at the program-level, the results were reversed (i.e., programs smaller than
the critical size value were less expensive). NCCA could not explain the contradiction,
therefore, regressions with ESLOC>? as a dummy variable were eliminated. This reduced the
number of equations by an additional 20, leaving a total of 37 estimating relationships for the
next round of elimination.

5.5.1.3 Round Three Eliminations

The third round of elimination focused on program and CSCI specific reasons for exclusion.
Three areas were analyzed: 1) performance and comparison of top-level equations versus
lower-level equations; 2) robustness of the underlying data utilized in the equation; and 3)
degrees of freedom of the resulting equations.

Program-Level: The top-level equation [5-1], which was derived from all 31 data points and
had an embedded dummy slope, mimicked its corresponding lower-level equation [5-2], which
consisted of only the 11 embedded data points as shown below:

Top-Level Equation (Program-Level, Embedded)
Effort = 0.0041 * [New SLOC + (0.19 * Reused SLOC)][1.0377 + (0.0651 * D1)] [5-1]

Section 5 - Effort Analysis: Normalized Regressions

5 - 12

R2 = 0.92 Std Error = 0.54 Std Errorembedded
41 = 0.45 Predict (20)= 32%

 Predict (20)embedded
41 = 55% N = 31

where D1 equals one if the program is embedded and zero otherwise.

Lower-Level Equation (Program-Level, Embedded)
Effortembedded = 0.0041 * [New SLOC + (0.09 * Reused SLOC)](1.1101)

R2 = 0.92 Std Errorembedded = 0.42 Predict (20) = 45% N = 11

The constant slope (1.1101) and net slope (1.0377 + 0.0651 = 1.1028) of the two equations are
almost exactly the same. While the R2s are identical, the standard error of 0.42 for equation [5-
2], is slightly better than the partial standard error of 0.45 for equation [5-1]; however, there is a
significant tradeoff in degrees of freedom (9 versus 28) when using equation [5-2].

The top-level equation [5-3], which was derived from all 31 data points and had a 100 percent
new dummy slope, also mimicked its corresponding lower-level equation [5-4], in which only 100
percent new data points were utilized.

The partial standard error in the top-level equation [5-3] is the same as the standard error in the
lower-level equation [5-4], yet a very large tradeoff in degrees of freedom again occurred while
using the lower-level regression. In contrast, the R2 and Predict (20) are higher for the lower-
level equation [5-4]. However, as discussed previously, due to the source database influences
involved in the Predict (20) calculations, NCCA prefers to minimize the standard error
associated with a regression. Therefore, since equations [5-1] and [5-3], the top-level equations
with corresponding dummy slopes, perform as well as equations [5-2] and [5-4], these lower
level equations were eliminated.

Top-Level Equation (Program-Level, 100% New)
Effort = 0.0013 * [New SLOC + (0.35 * Reused SLOC)] [1.1345 + (0.0841 * D1)]

R2 = 0.93 Std Error = 0.5 Std Error100% New
42 = 0.27 Predict (20) = 50%

Predict (20)100% New
42

 = 55% N = 31
where D1 equals one if the program is 100% new and zero otherwise.

Lower-Level Equation (Program-Level, 100% New)

Effort100% New = 0.0011 * (Total)(1.2304)
 R2 = 0.98 Std Error = 0.27 Predict (20) = 63% N = 8

CSCI-Level: Similar to the program-level regressions, the top-level equation, with an
embedded dummy, mimicked the corresponding lower-level equation. Therefore, the lower-
level equations from the embedded subsets of data were eliminated.

Program- and CSCI-Level: Table 5-6 shows the distribution of data points for each of the
lower-level equations. Many of the lower-level equations that remained had low standard error

41StdError embedded and Predict (20)embedded represent the standard error and Predict (20) of the equations when applied to the
underlying embedded data points (N=11) only, vice calculating the standard error and Predict (20) of the overall equation, which
would be calculated using all 31 data points
42StdError 100% New and Predict (20)00% New represent the standard error and Predict (20) of the equations when applied to the
underlying 100% New data points (N=8) only, vice calculating the standard error and Predict (20) of the overall equation, which
would be calculated using all 31 data points

[5-3]

[5-2]

[5-4]

Section 5 - Effort Analysis: Normalized Regressions

5 - 13

and high Predict (20) values; however, the number of data points and, therefore, the degrees of
freedom were small. For example, the >75% reuse data set consisted of eight and ten data
points at the program- and CSCI-levels, respectively. The small data sets were especially
prevalent at the program-level.

 Source Database Code43
Partition Level 1 3 4 5 8 Total

100% New Program 5 3 8
 CSCI 23 5 1 0 3 32
Not 100% New Program 7 1 15 23
 CSCI 15 1 3 45 1 65
Reuse > 75% Program 2 1 5 8
 CSCI 6 1 3 10
Reuse > 50% Program 3 1 5 9
 CSCI 9 0 1 29 39
0% < Reuse ≤ 50% Program 5 9 14
 CSCI 6 1 2 16 1 26
Embedded Program 9 1 10
 CSCI 29 2 45 4 80

Table 5-6: Subset Distribution of Data Points Across Source Databases

Additionally, many of the other lower-level regressions consisted of only two database sources.
For example, at the program-level, the embedded partition consisted of only 10 data points and
all but one came from the same database source. For these reasons, all of the remaining
lower-level program-level equations were eliminated. All of the CSCI-level lower-level equations
were also eliminated except for those from the 100% new and not 100% new partitions. These
lower level equations did not mimic the top-level equations with associated dummy variables, as
was the case at the program-level, and they did not suffer from low degrees of freedom or a low
number of database sources.

After three rounds of elimination, a total of 16 equations remained. NCCA next eliminated
equations which maximized Predict (20) vice minimizing the standard error, based on the biases
previously discussed (i.e., the regressions were fitting the curve through the data source with
the greatest number of data points). This left 10 significant equations, eight top-level program-
and CSCI-level equations with and without dummy variables and two CSCI lower level
equations. Of these, NCCA selected the equations with the lowest standard error that also
captured the effects of the significant drivers identified in Section 4 - Effort Analysis:
Significant Drivers.44 This resulted in the following four equations:

Top-Level Equation (Program-Level)

Effort = 0.0028 * [New SLOC + (0.3 * Reused SLOC)][1.0549 + (0.0668 * D1 + (0.0427 * D2)]

 R2 = 0.94 Std Error = 0.47 Predict (20) = 35% N = 31 Range = 4.2 - 72.3 EKSLOC
where D1 equals one if the program is 100% new and zero otherwise; and D2 equals one if the program is embedded and zero otherwise

Top-Level Equation (CSCI-Level)

43 The code number NCCA assigned to each source database: 1 = MITRE Non-Ada; 3 = SMC; 4 = NASA SEL; 5 = Navy Internal; 8
= IITRI Report.
44 The mode dummy was insignificant for the not 100 percent new lower-level equation.

[5-5]

Section 5 - Effort Analysis: Normalized Regressions

5 - 14

Effort = 0.0229 * [New SLOC + (0.03 * Reused SLOC)] [0.8609 + (0.0315 * D1 + (0.0529 * D2)]
 R2 = 0.77 Std Error = 0.67 Predict (20) = 26% N = 97 Range = 0.4 - 253.4 EKSLOC

where D1 equals one if the program is 100% new and zero otherwise; and D2 equals one if the program is embedded and zero otherwise

Lower-Level Equation (CSCI-Level, 100% New CSCIs)

Effort = 0.0387 * (Total SLOC)[0.779 + (0.1269 * D1)]

 R2 = 0.76 Std Error = 0.8 Predict (20) = 22% N = 32 Range = 0.4 - 128.2 KSLOC
where D1 equals one if the CSCI is embedded and zero otherwise

Lower-Level Equation (CSCI-Level, Not 100% New CSCIs)44

 Effort = 0.0114 * [New SLOC + (0.04 * Reused SLOC)](0.9766)
 R2 = 0.81 Std Error = 0. 56 Predict (20) = 31% N = 65 Range = 1.5 - 255.8 EKSLOC

For the CSCI-level, there remained two possible alternatives to estimate effort, either a top-level
equation [5-6] or a set of lower level equations based on whether the CSCI was 100 percent
new [5-7] or less than 100 percent new [5-8]. As previously stated, the program-level, lower-
level 100 percent new and not 100 percent new equations were eliminated because they
mimicked the top-level regressions.

100 PERCENT NEW PROGRAMS

A problem was discovered upon further examination of the 100 percent new CSCI-level
equation [5-7]. Figure 5-3 provides a comparison of two hypothetical programs. If program A is
a 100 percent new program, then the CSCIs that constitute program A will also be 100 percent
new. Program B is not 100 percent new. However, it is definitely possible within a program that
is not 100 percent new to have a mixture of CSCIs that are 100 percent new and CSCIs that
have some level of reuse.

Program A (100% New) Program B (< 100% New)
CSCI #1A 100% New CSCI #1B 100% New
CSCI #2A 100% New CSCI #2B 80% New
CSCI #3A 100% New CSCI #3B 50% New
Total Effort EA Total Effort EB

Figure 5-3: One Hundred Percent New CSCIs

When the data was filtered for 100 percent new CSCIs, CSCIs from both 100 percent new and
less than 100 percent new programs would be included. Thus, the 100 percent new CSCIs
from 100 percent new programs would be combined with the 100 percent new CSCIs from not
100 percent new programs. Once this was accomplished, however, it appeared that the
productivity metrics associated with CSCIs #1A, #2A, and #3A were worse than the productivity
of CSCI #1B.

A subset of the NCCA Normalized Database was used to determine if there was a difference
between 100 percent new CSCIs from 100 percent new programs and 100 percent new CSCIs
from not 100 percent new programs. The average hours per SLOC for 100 percent new CSCIs
from 100 percent new programs was twice as high as the average hours per SLOC for the 100
percent new CSCIs from not 100 percent new programs.

[5-6]

[5-7]

[5-8]

Section 5 - Effort Analysis: Normalized Regressions

5 - 15

Intuitively, it makes sense that CSCI #1B would be cheaper per line of code than any
corresponding CSCI in Program A. The effort to design a brand new CSCI for an existing
system is probably easier than designing a brand new CSCI for a system which does not exist
yet. One possible explanation for this difference is:

Improper Effort Allocation: The effort data for some programs in the NCCA Raw
Database appears to have been allocated to the CSCI-level. If effort was allocated, it
was probably done on a pro rata basis (bigger CSCIs get more effort allocated to them,
smaller CSCIs get less). A 100 percent new CSCI would have more requirements
analysis than a not 100 percent new CSCI. However, if the effort was allocated from the
program-level, the 100 percent new CSCI may receive only a proportion (based on size)
of the effort associated with requirements analysis instead of its true share. The result
would be that the 100 percent new CSCI from the not 100 percent new program would
erroneously appear to require less effort than a 100 percent new CSCI from a 100
percent new program (which would not suffer this allocation problem).

Ultimately, the reasons for the differences experienced are unknown. If there is an allocation
problem, it can only be detected and corrected during future collection of historical data.

• Based on this discrepancy, NCCA recommends that the analyst not estimate a 100
percent new program with the sum of 100 percent new CSCI-level regressions.

In theory, this also means that a CSCI-level regression should not mix CSCIs from 100 percent
new programs with those from not 100 percent new programs. The original 100 percent new
CSCI-level regression (resulting in equation [5-7]) included this mixture. Unfortunately, due to
the insufficient number of data points, it was not possible to develop separate regressions.

Again, based on the above discussion of the difference in 100 percent new CSCIs, NCCA
recommends that 100 percent new programs be estimated with the top-level program equation
[5-5] vice estimated at the CSCI-level with equation [5-6] and then summed. As a result,
equations [5-7] and [5-8] were eliminated, leaving one top-level program regression (equation
[5-5]) and one top-level CSCI regression (equation [5-6]). These regressions are in Appendix D.

Overall, the strengths of these equations are: 1) they quantitatively solve for the Efactor, so the
uncertainty and variance of the Efactor are reflected in the overall equation’s statistical results;
and 2) they account for the significant drivers (i.e., code condition and mode) without sacrificing
degrees of freedom. However, the weaknesses are:

1) The regressions do not account for high reuse programs separately (i.e., high reuse

programs and CSCIs are averaged into the regressions along with low reuse programs and
CSCIs and thereby drive the resulting average productivity up). Therefore, the regressions
probably overestimate productivity on programs or CSCIs with low reuse that are not 100
percent new (100% new programs or CSCIs are accounted for with a dummy variable) and
underestimate productivity of high reuse programs.

2) The program-level regression’s [5-5] underlying database consists primarily of non-

embedded data points, so resulting productivity metrics may be optimistic when applied to

Section 5 - Effort Analysis: Normalized Regressions

5 - 16

programs which are primarily embedded. However, the application of the dummy variable
attempts to account for the embedded programs, and the residuals do not indicate any bias.

3) The CSCI-level regression [5-6] is driven by one underlying program with 45 CSCIs (i.e., 46

percent of the database); therefore, if programs estimated are significantly different from this
program, the regression may not be appropriate.

4) The CSCI-level regression [5-6] exponent is less than one, which implies economies of

scale (as the CSCI size increases, productivity improves). As discussed on page 5-4, there
are varying opinions on the feasibility of economies of scale. In practice, NCCA expects that
as the program size increases, the number of CSCIs will also increase. Therefore, since the
CSCI-level traditional equation is applied at the CSCI-level, the constant of the equation will
be reapplied for each additional CSCI, which in effect eventually negates the impact of the
exponent. In other words, the larger the program (SLOC), typically, the larger the CSCI
count, and hence, the more times the constant will be added to the overall estimate. At
some point (depending on the size of and number of CSCIs associated with the program),
the CSCI equation crosses over and actually estimates more effort than the program-level
equation, which has a smaller constant but an exponent greater than one (i.e., economies of
scale are no longer realized).

Despite these weaknesses, the regressions are still valid approximations, and they are
considered in the final analysis (Section 5.7), which compares the remaining viable regressions.

5.5.2 NON-TRADITIONAL REGRESSIONS: SET ONE

Thus far, the focus of the discussion has centered around a fairly traditional regression for
software effort of the form:

Actual Effort = ƒ (ESLOC)

In addition to the final two traditional candidates (equations [5-5] and [5-6]), a set of "non-
traditional" effort regressions was developed. This analysis was based on developing
regressions where effort was a function of SLOC without the use of an Efactor. Two different
sets of analyses were developed and are detailed below.

The first approach was to specifically filter the database for all data points that have the same
type of SLOC. For example, one filter was for data points with non-zero values for new and
modified SLOC. If enough data points were present, a direct regression (without the need for
Efactors) was performed.

NCCA created several subsets of data that met this criteria. The resulting regression equations
are outlined below:

Actual Effort = a * (New SLOC)b * (Modified SLOC)c

Actual Effort = a * (New SLOC)b * (Verbatim SLOC)c

Actual Effort = a * (New SLOC)b * (Reused SLOC)c

Section 5 - Effort Analysis: Normalized Regressions

5 - 17

These regressions were performed at both the program- and CSCI-levels. The equations that
contained modified SLOC as an independent variable were significant for both the CSCI- and
program-levels. The equations that contained verbatim SLOC as an independent variable were
not significant in either case (program- or CSCI-level). This makes sense because the Efactor
weights that were calculated for the verbatim code in the traditional regressions were quite small
(between 0.01 and 0.03). Unless the regression statistics were very tight, this small weight
would be insignificant and difficult to obtain. The regressions based on reused SLOC had
mixed results. They were significant at the program-level, but not at the CSCI-level. Again, this
was due to the underlying database. The program-level reused SLOC consisted of a large
amount of modified SLOC, while the CSCI-level data points consisted primarily of verbatim
SLOC.

Overall, the strengths of these equations are: 1) they do not require an Efactor, so one level of
uncertainty and variance is reduced and 2) they resulted in better statistics at the CSCI-level.
However, the weaknesses are: 1) the underlying database sizes are small; 2) the issue of
mapping the reused SLOC into the correct category still remains; 3) there were not enough data
points to develop regressions for other types of reused code, such as translated and rehosted;
4) they resulted in worse statistics at the program-level, and 5) it is not clear how dummy slopes
would be handled with this type of model (i.e., are they applied to new SLOC, modified SLOC,
or both?). Because of these weaknesses, NCCA eliminated this set of non-traditional
regressions from further consideration.

5.5.3 NON-TRADITIONAL REGRESSIONS: SET TWO

A second type of non-traditional effort regression was also investigated:

Effort = a * (Total SLOC)b * (1 - %Reused SLOC)c

The first term, a * (Total SLOC)b, is defined as a nominal effort scalar. The second term, (1 -
%Reused SLOC)c , is defined as a reuse discount factor. When regressions are performed, c is
a value between zero and one. Therefore, as the amount of reuse increases from zero to 100
percent, the term (1-%Reused)c decreases. When the amount of reuse is very low, the
estimated effort will essentially be derived from the first part of the equation. As the amount of
reuse increases, an increasing amount of effort will be removed from the nominal effort scalar
value. The results of the regressions are provided below as well as in Appendix D:

Program-Level Equation
Effort = 0.0015 * (Total SLOC)(1.1075) * (1 - %Reused SLOC)(0.3329))

 R2 = 0.91 Std Error = 0.52 Predict (20) = 18% N = 22 Range 9.0 - 1,113.0 KSLOC

CSCI-Level Equation
Effort = 0.0108 * (Total SLOC)(0.9767) * (1 - %Reused SLOC)(0.8394)

 R2 = 0.81 Std Error = 0.56 Predict (20) = 32% N = 65 Range 4.7 - 492.0 KSLOC

The major strength of this method is that it introduces the notion of a non-linear discount factor
for reuse (i.e., the proportionate amount of effort removed from the nominal effort is much
greater at a reuse level of 50 percent than it would be at a reuse level of 10 percent). Figure 5-4
demonstrates this graphically.

[5-9]

[5-10]

Section 5 - Effort Analysis: Normalized Regressions

5 - 18

Effect of Re-Use on SW Discount

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0% 25% 50% 75% 100%

Percent Re-Use

P
er

ce
n

t
D

is
co

u
n

t
fr

o
m

N

o
m

in
al

 E
ff

o
rt

CSCI

Program

Figure 5-4: Effort Discount as a Function of Reuse

A more detailed analysis of the discount factor shows that the critical reuse value (the point
where the standard error is minimized) at the program-level is 82 percent (i.e., percent reuse
becomes significant at greater than or equal to 82 percent). See Appendix D for supporting
documentation.

Another strength of this model is that the effect of changing from "new" to "reused" is not a step
function, but a smooth curve. In the traditional models with Efactors, changing the amount of
reuse by one line of code has the same effect on ESLOC whether it is the first line of reuse or
the last, therefore, the same "discount" is always applied (i.e., the Efactor is constant). With the
reuse discount factor applied in equations [5-9] and [5-10], a cumulative effect is achieved. The
amount of discount for the next line of reused code is greater than the previous line of reused
code (i.e., the Efactor is not constant). The final strength was the database size. Both
regressions had a robust set of data (included more than one database source) and both had a
sufficient sample size.

Weaknesses of this approach are: 1) the standard error is slightly higher at the program-level
when compared against the traditional effort regression (equation [5-5]); 2) dummy slopes, such
as embedded mode, a statistically proven productivity driver, were not utilized. The dummy
slopes could only be applied to one term in the equation (either the lines of code term or the
reused term), and it could not be determined which was correct; 3) the regressions yield
inaccurate estimates if the percent reused equals 100 percent (i.e., effort = 1 - 1 = 0). However,
NCCA questions the accuracy of any sizing estimate for a program that includes no new
development; and 4) the program-level discount factor is exceptionally flat in comparison to the
CSCI-level discount factor. Specifically, for a program with 90 percent reuse, the program-level
regression results in an estimate of approximately 46 percent of the effort of a 100 percent new
program. On the other hand, the CSCI-level regression estimates the same program to require
only 14 percent of the effort of a 100 percent new program. Intuitively, the program-level
regression appears to be conservative.

Despite these weaknesses, the regressions are promising and intuitively pleasing, and are
considered in the final analyses (Section 5-7), which compares the remaining viable
regressions.

Section 5 - Effort Analysis: Normalized Regressions

5 - 19

5.5.4 REVISED TRADITIONAL REGRESSIONS

Based on the strengths and weaknesses of equations [5-5], [5-6], [5-9], and [5-10], NCCA
developed one additional set of traditional regressions. NCCA performed regressions which
combined the impacts of the non-traditional discount factor into the traditional equations, by
incorporating a dummy variable for percent reused SLOC. These equations also take the form:

Effort = a * (ESLOC)b * e D c1

The results of the regressions are provided below as well as in Appendix D:

Top-Level Equation (Program-Level)
Effort = 0.0012 * [New SLOC + (1 * Reused SLOC)] [1.1067 + (0.0912 * D1) + (0.0326 * D2) - (0.0982 * D3)]

 R2 = 0.96 Std Error = 0.42 Predict (20) = 58% N = 31 Range = 9.0 - 1,113.0 EKSLOC
where D1 equals one if the program is 100 percent new and zero otherwise; D2 equals one if the program is in embedded mode and

zero otherwise; and D3 equals one if percent reused is greater than or equal to 82 percent and zero otherwise.

Top-Level Equation (CSCI-Level)
Effort = 0.0211 * [New SLOC + (0 * Reused SLOC)] [0.8590 + (0.0338 * D1) + (0.0631 * D2) + (0.0623 * D3)]
 R2 = 0.78 Std Error = 0.66 Predict (20) = 29% N = 97 Range = 0.4 - 245.8 EKSLOC
where D1 equals one if the CSCI is 100 percent new and zero otherwise; D2 equals one if the CSCI is in embedded mode and zero

otherwise; and D3 equals one if percent reused is greater than or equal to 75 percent and zero otherwise.

The major strength of this method is that it accounts for reuse, as well as the other significant
drivers identified previously (i.e., code condition and mode). The statistics of these equations
improve in comparison to the previous top-level regressions (equations [5-5] and [5-6]).
The major weakness of this approach at the program-level is that the Efactor equals one (i.e.,
reused SLOC require the same effort as new SLOC). Although NCCA expected the Efactor to
increase when the high reuse programs were normalized through the use of a dummy variable,
an Efactor of one is not intuitively pleasing. However, some experts say that reusing code
requires more effort than development from scratch. Although counterintuitive, it’s not infeasible
in certain circumstances. Additionally, an Efactor equal to one also introduces an additional
problem when attempting to compare productivity metrics between candidate equations, as
demonstrated in the following example.

• Based on Equation [5-5] and an Efactor = 0.3 for an embedded program:

If New SLOC = 10,000 and Reused SLOC = 10,000 then ESLOC = 13,000,
Effort = 91.75 MM; Productivity = 13,000/(91.75 MM * 152 hrs/MM) = 0.93 ESLOC/hour or

 = 20,000/(91.75 MM * 152 hrs/MM) = 1.43 SLOC/hour

• Based on Equation [5-11] and an Efactor = 1.0 for an embedded program with less than 82

percent reuse code:

If New SLOC = 10,000 and Reused SLOC = 10,000 then ESLOC = 20,000;
Effort = 95.36 MM; Productivity = 20,000/(95.36 MM * 152 hrs/MM) = 1.38 ESLOC/hour, or

 = 20,000/(95.36 MM * 152 hrs/MM) = 1.38 SLOC/hour

[5-11]

[5-12]

Section 5 - Effort Analysis: Normalized Regressions

5 - 20

Based on the metric “ESLOC/hour”, equation [5-11] appears to be more productive (1.38
ESLOC/hour versus 0.93 ESLOC/hour), when in actuality, it is estimating more effort (95.36
versus 91.75 man-months) for the same program. Hence, the analyst must be careful when
comparing productivity metrics among regressions with varying equivalent code conversion
techniques.

At the CSCI-level, the major weakness of this approach is the counterintuitive impact of high
reuse. For CSCIs with greater than 75 percent reuse, the equation adds effort vice deleting it.
This contradicts the program-level equation and NCCA’s expectations. Upon further analysis, it
became evident that one data point (NCCA-414) was driving this effect. After deletion of this
data point, the derived regression resulted in a critical reuse value of 61 percent (vice the 75
percent previously calculated). Also, the resulting equation deletes effort for those data points
which are greater than the critical value, vice adding effort as the original equation predicts.
However, unless specific, detailed technical or programmatic information supported deletion of
data points, NCCA did not delete apparent outliers.

Another weakness of this approach is that the Efactor for this equation at the CSCI-level is zero,
which implies that no additional effort is required for reused code. Although the effort may be
small, especially if the code used entirely as is (verbatim), NCCA still contends that there is
some effort associated with this code required to gain an understanding of it and verify
requirements.

However, despite these weaknesses, the program-level regression is appealing, so this set of
equations is also considered in the final analyses, which compares the remaining viable
regressions.

5.6 EVALUATION OF PROGRAM-LEVEL VERSUS CSCI-

LEVEL REGRESSIONS

Three sets of estimating relationships remained to be evaluated. The first set was the top-level
traditional regressions ([5-5] and [5-6]) which incorporated empirically developed Efactors. The
second set was the non-traditional regressions: Set Two ([5-9] and [5-10]) based on total SLOC
and percent reused SLOC. The final set was the revised top-level traditional regressions [5-11]
and [5-12] which also incorporated percent reused SLOC. To try to obtain additional information
about the individual sets of regressions, NCCA conducted two levels of comparison. The first
set of comparisons compared the CSCI versus Program estimate deltas for each set of
regressions (i.e., [5-5] versus [5-6] deltas; [5-9] versus [5-10] deltas; [5-11] versus [5-12] deltas).
See Appendix D for details. The second set of comparisons, also provided in Appendix D,
compared the estimates derived from each regression at both the program- and CSCI-level (i.e.,
[5-5] versus [5-9] versus [5-11] and [5-6] versus [5-10] versus [5-12]).

A separate set of validation data was constructed to evaluate how the program and sum of the
CSCI-level effort regressions compared. The data was not used at this point to compare
estimates with actuals because some of the validation data was non-normalized.45 The main
criterion for accumulating this data was that the program and CSCIs had to be linked. The

45 This data is used later to assess the overall estimating methodology, including using non-normalized productivity factors to
estimate the non-normalized data points. This is detailed in Section 7 – Effort Analysis: Overall Process.

Section 5 - Effort Analysis: Normalized Regressions

5 - 21

database sources that provided this information were the MITRE Non-Ada, MITRE Ada, SMC,
NASA SEL, Navy Internal, and SASET databases. The data represented programs with
different quantities of CSCIs and a range of CSCI sizes. The only other criterion was that the
SLOC were counted as logical lines.

A total of 22 programs with associated CSCI information were identified. As Table 5-7 shows,
most of the validation data points came from the MITRE Non-Ada Database. Also, there were a
significant number of 100 percent new programs. Since no comparison was made at this time
between estimates and actuals, the sum of CSCI-level estimates using a CSCI-level 100
percent new estimate, could be used on the 100 percent new programs.

Record # Program
Size

DB
Code

CSCI
Count

Avg CSCI
Size

Mission Language %New

NCCA-67 11.0 5 2 399.6 UUV Ada 100
NCCA-286 134.7 6 6 44.6 Radar Assembly 100
NCCA-287 57.0 6 4 43.9 C3 HOL 100
NCCA-291 58.5 4 2 234.1 SIM Fortran 15
NCCA-315 74.8 2 6 9.5 C3 Ada 51
NCCA-347 95.1 2 7 14.6 SIM Ada 100
NCCA-367 114.4 4 2 231.9 SIM Fortran 87
NCCA-409 185.6 1 4 42.0 Radar Jovial 16
NCCA-410 204.0 1 5 204.0 Radar Jovial 80
NCCA-411 210.0 5 3 284.2 ASW C 19
NCCA-417 231.9 1 12 28.6 C3 CMS-2 100
NCCA-418 234.1 1 7 185.6 Radar Jovial 62
NCCA-422 254.1 3 6 338.1 C3 Ada 62
NCCA-425 263.2 6 15 295.2 C3 Assembly 100
NCCA-427 267.9 6 4 47.3 Radar HOL 37
NCCA-428 283.5 6 6 84.7 Radar HOL 87
NCCA-431 295.2 1 18 37.4 C3 Assembly 100
NCCA-435 338.1 1 2 47.5 C3 Fortran 47
NCCA-441 422.5 5 9 2.2 C3 Ada 100
NCCA-454 1113.0 1 4 22.4 C3 Jovial 50
NCCA-456 1420.8 5 10 1,113.0 C3 C 99
NCCA-458 1997.9 5 52 84.5 ASW Ada 47

Table 5-7: Summary of Validation Database

As Table 5-8 shows, program- and CSCI-level estimates tended to be within 20 to 50 percent of
each other, with mean absolute deviations (MADs) of 26.6 percent, 36.7 percent, and 28.8
percent, respectively. This is very good considering the standard error around most of the final
regressions was between 40 and 60 percent. See Appendix D for graphical representations of
the final six equations and associated supporting spreadsheets and regression comparison
tables for both the program- and CSCI-levels.

A few interesting observations from this analysis were noted (as shown in Figures 5-5 to 5-8):

• No trend was found when the differences were compared against CSCI average size or

CSCI count (Figures 5-5 and 5-8 respectively).

Section 5 - Effort Analysis: Normalized Regressions

5 - 22

 % EQ #5 versus ΣEQ #6 EQ #9 versus ΣEQ #10 EQ #11 versus ΣEQ #12
Record # NEW % Difference % Difference % Difference

NCCA-067 100 10.5% 110.9% 35.3%
NCCA-286 100 -32.8% 55.3% -29.1%
NCCA-287 100 -19.7% 73.1% -11.0%
NCCA-291 15 -33.9% -35.8% -4.3%
NCCA-315 51 15.0% 17.2% 5.8%
NCCA-347 100 -28.6% 63.2% -38.2%
NCCA-367 87 -3.6% 45.0% 3.0%
NCCA-409 16 -16.9% 29.5% -8.6%
NCCA-410 80 -55.0% -41.1% 14.3%
NCCA-411 19 -35.3% -41.7% -65.7%
NCCA-417 100 -38.7% 46.4% -37.6%
NCCA-418 62 -19.5% 4.1% -21.9%
NCCA-422 62 -7.7% 10.2% -24.7%
NCCA-425 100 -39.0% 45.4% -38.5%
NCCA-427 37 -27.4% -16.2% -50.2%
NCCA-428 87 10.3% 31.0% 34.0%
NCCA-431 100 -41.6% 41.4% -42.1%
NCCA-435 47 -6.4% -11.7% -10.7%
NCCA-441 100 -46.5% 35.1% -47.3%
NCCA-454 50 -38.1% -17.7% -52.1%
NCCA-456 99 -28.4% 14.0% -10.1%
NCCA-458 47 -30.6% -21.1% -50.0%
MAD 26.6% 36.7% 28.8%
Predict (20) 40.9% 31.8% 36.4%
%Above 13.6% 68.2% 18.2%
%Below 86.4% 31.8% 81.8%

Table 5-8: Summary of Program versus CSCI Differences

• Both of the CSCI-level traditional regressions tended to consistently estimate a

smaller effort than the corresponding traditional program-level regressions. This
effect is the exact opposite for the non-traditional regression. Upon inspection of the
non-traditional equation (and the associated figures 5-5 through 5-8), it became
apparent that the program-level regression discounts the nominal effort (a * Total
SLOCb) much more slowly (i.e., the program-level exponent is smaller, therefore the
discount is smaller as the percent reuse increases) than the CSCI-level regression.
However, the CSCI-level regression has a much larger constant. Therefore,
because a majority of the programs are greater than 80 percent new, the constant
vice the discount factor drives the resulting delta.

• Additionally, as Figure 5-6 demonstrates for the non-traditional equation, the critical

reuse crossover value appears to be approximately 50 percent. More specifically, at
50 percent the smaller constant in the program-level non-traditional regression is
overcome by the greater discount factor that is applied by the CSCI-level non-
traditional regression. In fact, as the graph depicts, the delta between CSCI- and
program-level data points generally increases as the percent reuse varies above or
below the critical reuse value of 50 percent.

• The biggest differences between the program- and CSCI-level regressions occurred

when estimating 100 percent new programs using the non-traditional equations. As
shown in Appendix D, this is being driven by the non-traditional program-level
equation, which estimates effort on average to be substantially less than the
traditional equations, while the CSCI-level estimates remain stable across equations.
This will not be a problem in practice, however, since NCCA recommends that CSCI-
level regressions for 100 percent new programs not be used (see discussion on

Section 5 - Effort Analysis: Normalized Regressions

5 - 23

page 5-14). Except for 100 percent new programs estimated using the non-
traditional equation, the regression differences were stable over the range of percent
new.

Trends in Deltas

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

120%

0 50 100 150 200 250 300

Avg CSCI Size (KSLOC)

C
S

C
I -

 P
ro

g
ra

m
 D

el
ta

Non-Traditional

Traditional

Revised

Figure 5-5: Average CSCI Size versus CSCI-Program Differences

Section 5 - Effort Analysis: Normalized Regressions

5 - 24

Trends in Deltas

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

120%

0 10 20 30 40 50 60 70 80 90 100

% New

C
S

C
I -

 P
ro

g
ra

m
 D

el
ta

Non-Traditional

Traditional

Revised

Figure 5-6: Percent New versus CSCI-Program Differences

Trends in Deltas

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

120%

0 10 20 30 40 50 60

CSCI Count

C
S

C
I -

 P
ro

g
ra

m
 D

el
ta

Non-Traditional

Traditional

Revised

Figure 5-7: Program Size versus CSCI-Program Differences

Section 5 - Effort Analysis: Normalized Regressions

5 - 25

Trends in Deltas

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

120%

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Project Size (KSLOC)

C
S

C
I -

 P
ro

g
ra

m
 D

el
ta

Non-Traditional

Traditional

Revised

Figure 5-8: CSCI Count versus CSCI-Program Differences

• As the overall program size increased, the deltas between the CSCI- and program-
level non-traditional regressions decreased, as shown in Figure 5-7.

• As expected, and demonstrated in the lower level spreadsheets provided in Appendix D, the

revised traditional regression was consistently higher than the traditional top-level
regression for program-level estimates of programs with large amounts of new code.
Conversely, the revised traditional regression was consistently lower than the traditional
regression for high-reuse program-level estimates, due to the discount factor. In contrast,
the CSCI-level regressions tended to remain relatively stable across all code condition
comparisons.

5.7 RECOMMENDATIONS

Table 5-9 shows the equation forms remaining for consideration at the program-level.

Program-Level Equations Effort = ƒ () Std Error Predict

(20)
Comments

Traditional - Top-Level ESLOC; 100% New; Mode 0.47 35% Overestimates low -reuse
data points &
underestimates high-reuse
data points

Non-Traditional Total SLOC; (1-% reuse) 0.52 18% Flat discount rate; Does not
account for all significant
drivers (mode)

Revised Traditional - Top-
Level

ESLOC; 100% New; Mode; %Reuse 0.42 58% Efactor = 1

Section 5 - Effort Analysis: Normalized Regressions

5 - 26

Table 5-9: Program-Level Equations Remaining

At the program-level, since the non-traditional equation appeared to discount programs too
slowly and resulted in poorer statistics, the non-traditional equation was eliminated from further
consideration. Hence, the top-level traditional and the revised traditional equation (which also
accounted for high reuse programs) remained. The revised traditional equation improves the
statistics of the regression and although the Efactor equals one, the 100% new and %Reuse
dummies adjust for the differences in effort between new and reused code. Additionally, since
the original traditional equation does not have dummy variables for both 100% new and high
reuse programs, NCCA deleted it from any further consideration.

Table 5-10 presents the equation forms remaining for consideration at the CSCI-level.

CSCI-Level Equations Effort = ƒ() Std Error Predict (20) Comments
Traditional - Top-Level ESLOC; 100% New; Mode 0.67 26% Exponent<1 which implies

economies of scale
Non-Traditional SLOC; %New 0.56 32% Does not account for all

significant drivers (mode)
Revised Traditional - Top-
Level

ESLOC; 100% New; Mode; %Reuse 0.66 29% Counterintuitive; Efactor = 0

Table 5-10: CSCI-Level Equations Remaining

Because the revised traditional CSCI-level equation resulted in counterintuitive results (as
percent reuse increased, effort also increased), it was eliminated from further consideration.
The non-traditional equation has the best statistics, however, it does not account for
development mode differences, which were proven to be a productivity driver in Section 4 -
Effort Analysis: Significant Drivers. Since NCCA considers recognition of the significant
drivers to be a crucial attribute, NCCA deleted the CSCI-level non-traditional equation from
further consideration. The traditional equation does account for productivity drivers, however,
since the exponent is less than one, it also implies economies of scale as previously discussed
on page 5-14. As stated previously, NCCA expects that as the program size increases, the
number of CSCIs will also increase. Therefore, the constant will be applied repeatedly, which
will eventually negate the impact of the exponent (i.e., economies of scale will no longer be
realized).

Based on the previously cited strengths and weaknesses and the statistics provided above,
NCCA recommends using the revised traditional program-level, equation [5-11], and the
traditional CSCI-level, equation [5-6], regressions as the standard NCCA effort tools. Based on
the underlying databases (reused code compositions), these tools should be applied as follows:

• If the program being estimated is 100 percent new, apply the following equation (revised
traditional program-level equation with the 100 Percent new dummy variable enabled) at the
program-level:

Revised Traditional Program-Level Equation
Effort = 0.0012 * (New SLOC)[1.1979 + (0.0326 * D1)]

 R2 = 0.96 Std Error = 0.42 Predict (20) = 58% N = 31 Range = 9 - 1,113 EKSLOC
where D1 equals one if the program is embedded and zero otherwise.

Section 5 - Effort Analysis: Normalized Regressions

5 - 27

• If the program being estimated has greater than or equal to 82 percent reused code,
apply the following equation (revised traditional program-level equation with the percent
reused dummy variable enabled) at the CSCI-level:

Revised Traditional Program-Level Equation

Effort = 0.0012 * [New SLOC + (1 * Reused SLOC)][1.0085 + (0.0326 * D1)]
 R2 = 0.96 Std Error = 0.42 Predict (20) = 58% N = 31 Range = 9 - 1,113 EKSLOC

where D1 equals one if the program is embedded and zero otherwise.

• If the program being estimated is neither 100 percent new nor greater than or equal to 82
percent reused code, and the reused code is evenly distributed between modified and
reused code, apply the following equation (revised traditional program-level equation) at the
program-level:

Revised Traditional Program-Level Equation

 Effort = 0.0012 * [New SLOC + (1 * Reused SLOC)][1.1067 + (0.0326 * D1)]
 R2 = 0.96 Std Error = 0.42 Predict (20) = 58% N = 31 Range = 9 - 1,113 EKSLOC

where D1 equals one if the program is embedded and zero otherwise.

• If the program being estimated is neither 100 percent new nor greater than or equal to 82
percent reused code, and the reused code is predominately verbatim, apply the following
equation (traditional CSCI-level equation) at the CSCI-level:

Traditional CSCI-Level Equation
Effort = 0.0229 * [New SLOC + (0.03 * Reused SLOC)] [0.8609 + (0.0315 * D1)+ (0.0529 * D2)]

 R2 = 0.77 Std Error = 0.67 Predict (20) = 26% N = 97 Range = 0.4 - 253.4 EKSLOC
where D1 equals one if the program is 100% new and zero otherwise; and D2 equals one if the program is embedded and zero otherwise

This overall approach for estimating programs with sufficient program definition is
recommended for the following reasons:

1) Significant productivity drivers (100% new and mode), as defined in Section 4 - Effort

Analysis: Significant Drivers, are accounted for in the equations.
2) The anticipated decrease in effort expected on high reuse programs is accounted for in the

equations.

3) The differences expected in effort due to different reuse compositions (predominantly

verbatim versus not predominantly verbatim) are accounted for in the equations.

4) None of the resulting equations consistently overestimates or underestimates effort (i.e.,

more balanced residuals than the lower-level regressions).

5) One hundred percent new programs, which have historically been more difficult to develop,

are accounted for in the equations.

Section 5 - Effort Analysis: Normalized Regressions

5 - 28

5.8 CONCLUSIONS

Over 300 regressions were performed on various subsets of the NCCA Raw Database, with
different explanatory variables applied. Yet, of all these regressions, only a few had a standard
error that was under 40 percent, and most of these could not be considered because they either
had too few data points or resulted in counterintuitive results. Provided below is a list of the
reasons why the resulting regressions experienced relatively large variances.

1) Code Counting Definitions: Even though the database classified the SLOC as physical or

logical, there are many other ways that code can be counted. Some databases were careful
to state that their SLOC count included only delivered SLOC, but others did not. At an even
lower level, some programs only counted delivered executable SLOC, while others counted
all delivered code. Unless the programs all come from the same developer, who counts the
SLOC consistently, there will be variances in size from program to program due to different
counting conventions.

2) Definitions: The NCCA Raw Database was normalized by the phasing of the reported

effort (i.e., it included only data points which reported effort from SDR through FQT).
However, NCCA could not, in all situations, normalize for the differences in labor categories
included within these phases, or the actual taskings included. The NCCA Raw Database
does not track effort by labor category or activity to show what is included in the total effort.
However, NCCA did attempt to verify that all databases included “direct support” types of
activities, such as Program Management, Quality Control and Documentation. This is
another source of variance in the data and another reason why data collection and
analogies should be contractor specific.

3) Schedule: The effort required to develop a program is dependent upon the schedule; a
suboptimal schedule will increase development effort. There were not enough data points in
the NCCA Raw Database to test the effect of schedule on the total effort. Even if there
were, the database only tracks actual schedule. The initial staffing of a program is based on
estimated schedule. If the initial estimate is too steep, then a program manager may have
to add staff, which reduces overall productivity. Ultimately, the difference between the
optimal schedule and the actual schedule may influence the results and account for
differences experienced among programs.

4) Non-Homogeneous Data: The NCCA Raw Database includes both older and newer

programs. Many of the programs come from the early to mid-1970s when punch cards,
batch-mode processing, and slow computers resulted in larger compiler times.46 The older
programs are also characterized by:

• Large amounts of Assembly,
• Low amounts of reuse,
• Less sophisticated tools, and

• Storage and processing constraints.

46 The Doty Model [16] actually had a factor to account for the amount of time it took for software to be compiled.

Section 5 - Effort Analysis: Normalized Regressions

5 - 29

Conversely, newer programs have:

• Low or no amount of Assembly,
• Higher amounts of reuse,
• Modern tools, and
• Faster processors with cheaper memory.

Intuitively, the older programs should have lower productivity than newer programs, but in
actuality only minimal differences have been experienced. This is possibly because newer
programs are not only more productive, but also more complex. The complexity of newer
programs negates the productivity improvements made by implementing modern tools, faster
processors, etc. Therefore, over time minimal differences are realized. Additionally, the NCCA
Raw Database represents a combination of well-behaved and ill-behaved programs. It does
not, however, contain any canceled programs. Some of the programs experienced code
growth, effort growth, and schedule slippages, due to the following reasons:

• Staffing: The developer may have experienced an unexpectedly high rate of turnover on
key personnel skills. Also, the developer may have experienced difficulty building up to
a particular staffing level due to market constraints.

• Requirements creep: The customer may have demanded more functionality from the

software. Additionally, energetic developers may have added unwanted features to
make the product more desirable.

• Reuse: The code the developer wanted to reuse might have required software fixes or

enhancements to meet the required functionality.

Databases, which tracked the initial estimates of size, schedule, and effort along with the
resulting metrics, would also be good indicators of ill-behaved programs. However, the NCCA
Raw Database does not track effort estimates, so NCCA cannot assess the behavior of the
underlying programs. Similar to the issue of old versus new data points, the standard
regressions tend to average out the effects of well-behaved and ill-behaved programs.

5) Tools and Processes: The process and tools used to develop software can play an

important role. Unfortunately, many of the metrics that attempt to capture these factors are
subjective. When available for a given data point, the NCCA Raw Database identifies the
design methodology used to develop the software (waterfall, incremental, spiral and
evolutionary). However, because this information was often not available, NCCA could not
statistically test the significance of process. The database does not identify the type of tools
used to develop the software. But, based on the fact that the database identifies
development time, it is safe to assume that the database captures the effects of modern, as
well as older, tools and practices.

In conclusion, collecting more data that is sensitive to the areas discussed above will lead to
better overall top-level regressions. However, it is unlikely that the variance of top-level
regressions will ever approach the lower variance of contractor-specific regressions. As such,
NCCA’s recommended approach to estimating software development effort is to gather

Section 5 - Effort Analysis: Normalized Regressions

5 - 30

complete, detailed, contractor-specific data, and use this data to construct contractor-specific
estimating relationships. Accordingly, the standard estimating relationships presented in this
section should be used if, and only if, the analyst is unable to collect contractor-specific data
relevant to the future software development effort being estimated.

5.9 FUTURE EFFORTS

Decreasing estimating variance and adapting regressions to be more sensitive to environmental
variables rests solely on the ability to collect additional information in the future. The following
are some areas that should be explored:

1) Internal Reuse: Programs that reuse portions of their code over and over have common

SLOC. In the NCCA Raw Databases, NCCA mapped this type of SLOC into the verbatim
SLOC category. However, a potential problem exists: a program may inaccurately state
that it is 100 percent new, when in fact common SLOC will be reused within the same
program. The common code can only be considered new once. Hence, the NCCA Raw
Database should be updated to discriminate between SLOC reused from outside programs
and organizations and SLOC that are reused in the same program.

2) Schedule: It is desirable to create an empirical model that includes both size and schedule.

NCCA should also investigate how scheduling at the CSCI-level affects overall program
productivity to determine whether there is an optimal sequence.

3) WBS Activity: If the NCCA Raw Database captured software development effort by

standardized WBS activity, then activity-specific estimating relationships could be
investigated. Perhaps programming is directly related to the size of the program, while
program management support is tied more directly to the overall length of the schedule.
Estimates based on these WBS activities would enable a more sensitive “what-if” analysis to
be accomplished (especially in areas like acquisition reform or when changes in software
development standards occur).

4) Platform Integration: The NCCA Raw Database has no information regarding the cost of

integrating a group of software products into an aircraft's Operational Flight Program (OFP)
or into a ship's combat system. These costs are typically not included in the OFP’s or
combat system’s development cost, but rather are attributed to the host platform (i.e., the
aircraft or ship).

5) Non-Operational to Operational Ratios and Associated Effort: A significant amount of

operational code is usually required for software development, but to truly estimate the total
effort required, data collection should focus on both operational and non-operational code.

EFFORT ANALYSIS:

NON-NORMALIZED PRODUCTIVITY FACTORS

6.1 INTRODUCTION

NCCA performed an analysis of the NCCA Raw Database in order to provide analysts with
productivity factors to estimate effort when the standard regressions (discussed in Section 5 -
Effort Analysis: Normalized Regressions) are not appropriate. The standard regressions
should not be utilized when either: 1) analogous or contractor specific data points exist; 2) the
program being estimated does not meet NCCA’s normalization criteria; or 3) sufficient definition
to determine whether the program meets NCCA’s normalization criteria is unavailable.

NCCA’s normalization criteria are based on the analysis in Section 4 - Effort Analysis:
Significant Drivers and are as follows:

Domain or Mission is weapon system,
Code counting convention is logical,
Code is written primarily in an HOL (more than 70 percent), and
Phasing is from SDR through FQT.

In addition, the following information must be defined for the program being estimated:

Code condition,
Software mode, and
Hours per man-month.

For situations where the regressions are not appropriate, NCCA has developed non-normalized
top-level productivity factors. This section of the handbook is composed of the following four
subsections:

• Data
• Methodology and Results
• Recommendations
• Conclusions

6.2 DATA

All data used in this analysis came from the NCCA Raw Database (Section 3 - Software
Database). NCCA created 12 data sets from the NCCA Raw Database to develop the factors.

6

Section 6 - Effort Analysis: Non-Normalized Productivity Factors

6 - 2

6.3 METHODOLOGY AND RESULTS

NCCA followed four steps to develop the productivity factors. First, NCCA selected the factors
to be developed. Second, the specific data sets required for the analysis were filtered from the
NCCA Raw Database. Third, the productivity was calculated for each data point. Fourth, the
average productivity, standard deviation, and CV were calculated for each data set. The
average productivity is the top-level productivity factor.

The factors NCCA developed were based on the results of the analysis in Section 4 -Effort
Analysis: Significant Drivers. The factors were developed to address non-normalized
programs, (i.e., programs that do not satisfy all of the criteria shown on the previous page). Six
sets of top-level factors were developed. Each set contains two factors (i.e., a total of 12 factors
were developed). One of the factors should be used when the code condition is unknown, the
other should be used when the code condition is known. The factors for programs where the
code condition is unknown are expressed in Hrs/Total SLOC. The factors for programs where
the code condition is known are expressed in Hrs/ESLOC. The factors were developed in this
manner to address code condition as a productivity driver.

The first set of factors was developed for situations where the normalized standard regressions
cannot be utilized because the program being estimated is a MIS program. There were
insufficient data points to create normalized MIS regressions. Hence, these are non-normalized
factors. The second and third sets of factors were developed for situations where the
normalized standard regressions cannot be utilized because the program being estimated is
written in more than 30 percent Assembly (i.e., the HOL content is less than 70 percent). The
fourth set of factors was developed for situations where the normalized standard regressions
cannot be utilized because the program being estimated was sized using a physical code
counting convention. The fifth set of factors was developed for situations where the normalized
standard regressions cannot be utilized because the code counting convention used to size the
program being estimated is unknown. The sixth set of factors was developed for situations
where the program being estimated was sized using a logical code count (a normalization
criterion), yet the standard regressions cannot be utilized because the phasing is unknown. The
remainder of this section discusses how each of the 12 factors was developed.

6.3.1 MIS PROGRAMS

METHODOLOGY

Two data sets were filtered to develop the factors to be utilized for MIS program estimates.
Since these are top-level non-normalized factors, phasing, mode, and hours per man-month
were not used as criteria for these or any of the other factors.

 1) Code condition is unknown (17 data points):

The data set used to develop this factor consisted of MIS programs written primarily in an HOL
minus six outliers.47 The following six data points were eliminated for the same reason they

47 The data w as not filtered on code condition. In this data set and those that follow, all data points where code condition was
known were included in the code condition unknown data set, and treated as if the code condition was unknown.

Section 6 - Effort Analysis: Non-Normalized Productivity Factors

6 - 3

were eliminated from the “MIS” data set in Section 4 - Effort Analysis: Significant Drivers
(see page 4-3): NCCA-39, NCCA-43, NCCA-55, NCCA-74, NCCA-92, and NCCA-157. NCCA
concluded that the actual effort for each of these six CSCIs was not captured, but rather that the
total effort for the program was allocated to the CSCI-level. Table 6-1 demonstrates how this
data set was filtered from the NCCA Raw Database. The italicized letters are the field names in
the NCCA Raw Database used for the filters. The non-italicized letters are the criteria utilized to
filter the NCCA Raw Database.

 2) Code condition is known (17 data points):

Because the code condition was known for all 17 data points (i.e., there were no blanks in the
New field), this factor was developed from the same data set as the previous factor (see Table
6-1).

Code Condition Unknown Code Condition Known
Mission = MIS

Lang1 ≠ Assembly
(Eliminated 6 outliers)

Mission = MIS
Lang1 ≠ Assembly

(Eliminated 6 outliers)
New ≠ blank

Table 6-1: Productivity Factor (MIS Programs)

The productivity, expressed in Hrs/SLOC was then calculated for each data point in the MIS
code condition unknown data set. A 152-hour per man-month rate was assumed for those
programs that did not report actual rates.

The productivity, expressed in Hrs/ESLOC, was then calculated for each data point in the MIS
code condition known data set. Again, a 152-hour per man-month rate was assumed for those
programs that did not report actual rates.

The average productivity, standard deviation, CV, and resulting CV of the factor (CVest)48 were
then calculated for each data set. The average productivity of each data set constitutes the
standard productivity factor.

RESULTS

The factors to be utilized when analogous or contractor specific data is not available, the
program is MIS, and

 1) Code condition is unknown = 0.6913 Hrs/Total SLOC
 CV = 86%; CVest = 132%; n = 17

 2) Code condition is known = 0.8240 Hrs/ESLOC
 Efactor = 0; CV = 72%; CVest = 103%; n = 17

48 NCCA performed an additional calculation to obtain a comparable CV of the estimate derived from the application of the standard
factor. CVest is the standard error of the estimate divided by the mean of the actual values:

CVest =
Y

SEEdataset

Section 6 - Effort Analysis: Non-Normalized Productivity Factors

6 - 4

Although not intentionally filtered in this manner, the data sets used to develop these factors
consisted entirely of programs that were sized by a logical code count. Therefore, applying this
factor to MIS programs sized by a physical code count may overestimate effort. Since these
factors were developed from data sets consisting of programs written primarily in an HOL, they
should not be applied to MIS programs written primarily in Assembly (although a MIS program
written in Assembly is highly unlikely). Factors (1) and (2) are the only factors applicable to
MIS, since all future factors will be developed from data sets consisting entirely of weapon
systems.

6.3.2 WEAPON SYSTEM PROGRAMS - PRIMARILY ASSEMBLY

METHODOLOGY

Two data sets were filtered from the NCCA Raw Database to develop the factors for estimating
programs written in more than 30 percent Assembly.

 3) Code condition is unknown (68 data points):

The data set used to develop this factor consisted of weapon system programs written in more
than 30 percent Assembly (i.e., less than 70 percent HOL). Table 6-2 demonstrates how this
data set was actually filtered from the database.

 4) Code condition is known (61 data points):

The data set used to develop this factor consisted of the 68 data points listed above minus
seven data points for which the code condition was unknown (see Table 6-2).

Code Condition Unknown Code Condition Known
HOL < 0.7

Mission ≠ MIS or blank49

HOL < 0.7
Mission ≠ MIS or blank

New ≠ blank
Table 6-2: Productivity Factor (30% Assembly Programs)

RESULTS

The factors to be utilized when additional analogous or contractor specific data is not available,
the program is written in more than 30 percent Assembly, and

 3) Code condition is unknown = 2.6504 Hrs/Total SLOC
 CV = 120%; CVest = 177%; n = 68

 4) Code condition is known = 3.0093 Hrs/ESLOC
 Efactor = 0.6; CV = 115%; CVest = 168%; n = 61

These factors were developed from data sets that consisted of programs written, on average, in
82.4 percent Assembly. If the program being estimated consists of more than 82.4 percent

49All programs which have a blank in the Mission field must also be eliminated since some of these programs may be MIS
programs.

Section 6 - Effort Analysis: Non-Normalized Productivity Factors

6 - 5

Assembly, these factors may underestimate the effort. If the program being estimated consists
of less than 82.4 percent Assembly, these factors may overestimate the effort. This and the
next set of factors are the only ones applicable to programs written in Assembly, since all other
factors were developed from data sets consisting entirely of programs written primarily in an
HOL.

6.3.3 WEAPON SYSTEM PROGRAMS - 100 PERCENT ASSEMBLY

METHODOLOGY

Two data sets were filtered from the NCCA Raw Database to develop the factors for estimating
programs written entirely in Assembly.

 5) Code condition is unknown (40 data points):

The data set used to develop this factor consisted of weapon system programs written entirely
in Assembly (i.e., zero percent HOL). Table 6-3 demonstrates how this data set was filtered
from the database.

 6) Code condition is known (38 data points):

The data set used to develop this factor consisted of the 40 data points listed above minus two
data points for which the code condition was unknown (see Table 6-3).

Code Condition Unknown Code Condition Known
HOL = 0

Mission ≠ MIS or blank
HOL = 0

Mission ≠ MIS or blank
New ≠ blank

Table 6-3: Productivity Factor (100% Assembly Programs)

RESULTS

The factors to be utilized when analogous or contractor specific data is not available, the
program is written entirely in Assembly, and

 5) Code condition is unknown = 3.7383 Hrs/Total SLOC
 CV = 100%; CVest = 132%; n = 40

 6) Code condition is known = 3.9904 Hrs/ESLOC
 Efactor = 0.69; CV = 98%; CVest = 125%; n = 38

Although it is highly unlikely that a MIS program would be written in Assembly, analysts must
use caution if applying these factors to MIS programs since they were developed from data sets
consisting entirely of weapon systems.

Section 6 - Effort Analysis: Non-Normalized Productivity Factors

6 - 6

6.3.4 PHYSICAL CODE COUNTING CONVENTION

METHODOLOGY

Two data sets were filtered from the NCCA Raw Database to develop the factors for estimating
programs sized with a physical code counting convention.

 7) Code condition is unknown (18 data points):

The data set used to develop this factor consisted of weapon system programs that were written
primarily in an HOL (greater than or equal to 70 percent), and sized according to a physical
code counting convention. Table 6-4 demonstrates how this data set was filtered from the
database.

 8) Code condition is known (18 data points):

Because the code condition was known for all 18 data points, this factor was developed from
the same data set as previously described (see Table 6-4).

Code Condition Unknown Code Condition Known
Count = P

Mission ≠ MIS or blank
HOL ≥ 0.7

Count = P
Mission ≠ MIS or blank

HOL ≥ 0.7
New ≠ blank

Table 6-4: Productivity Factor (Physical Programs)

RESULTS

The factors to be utilized when analogous or contractor specific data is not available, the Code
Counting Convention is physical, and

 7) Code condition is unknown = 0.6357 Hrs/Total SLOC
 CV = 124%; CVest = 93%; n = 18

 8) Code condition is known = 0.7350 Hrs/ESLOC
 Efactor = 0; CV = 104%; CVest = 123%; n = 18

Although not intentionally filtered in this manner, the data sets used to develop these factors
consisted entirely of embedded mode programs. Therefore, the analyst must use caution when
applying these factors to non-embedded mode programs, since they may overestimate effort of
non-embedded programs. To reiterate, these factors should not be applied to MIS programs or
to programs written primarily in Assembly since they were developed from data sets consisting
entirely of weapon system programs written primarily in an HOL.

Section 6 - Effort Analysis: Non-Normalized Productivity Factors

6 - 7

6.3.5 UNKNOWN CODE COUNTING CONVENTION

METHODOLOGY

Two data sets were filtered from the NCCA Raw Database to develop the factors for estimating
programs with an unknown code counting convention.

 9) Code condition is unknown (273 data points):

The data set used to develop this factor consisted of weapon system programs that were written
primarily in an HOL (greater than or equal to 70 percent). Table 6-5 demonstrates how this data
set was filtered from the database.

 10) Code condition is known (262 data points):

The data set used to develop this factor consisted of the 273 data points listed above minus 11
data points for which the code condition was unknown (see Table 6-5).

Code Condition Unknown Code Condition Known
Mission ≠ MIS or blank

HOL ≥ 0.7

Mission ≠ MIS or blank
HOL ≥ 0.7

New ≠ blank50
Table 6-5: Productivity Factor (Unknown Code Condition Programs)

RESULTS

The factors to be utilized when analogous or contractor specific data is not available, the Code
Counting Convention is unknown, and

 9) Code condition is unknown = 1.3238 Hrs/Total SLOC
 CV = 128%; CVest = 196%; n = 273

10) Code condition is known = 1.6763 Hrs/ESLOC
 Efactor = 0.12; CV = 107%; CVest = 215%; n = 262

Again, since these factors were developed from data sets consisting entirely of weapon system
programs that were written primarily in an HOL, they should not be applied to programs written
primarily in Assembly or to MIS programs.

6.3.6 LOGICAL CODE COUNTING CONVENTION - PHASING
 UNKNOWN

METHODOLOGY

Two data sets were filtered from the NCCA Raw Database to develop the factors for estimating
programs with a logical code counting convention and phasing unknown.

50The blanks in the New field must be eliminated manually. There is one program with zero percent new code. This data point
should be included in the data set, although LOTUS will eliminate it along with the blanks in the field.

Section 6 - Effort Analysis: Non-Normalized Productivity Factors

6 - 8

 11) Code condition is unknown (186 data points):

The data set used to develop this factor consisted of weapon system programs that were sized
by a logical code counting convention and written primarily in an HOL (greater than or equal to
70 percent). Table 6-6 demonstrates how this data set was filtered from the database.

 12) Code condition is known (185 data points):

The data set used to develop this factor consisted of the 186 data points listed above minus one
data point for which the code condition was unknown (see Table 6-6).

Code Condition Unknown Code Condition Known
COUNT = L

Mission ≠ MIS or blank
HOL ≥ 0.7

COUNT = L
Mission ≠ MIS or blank

HOL ≥ 0.7
New ≠ blank51

Table 6-6: Productivity Factor (Logical Programs, Phasing Unknown)

RESULTS

The factors to be utilized when additional analogous or contractor specific data is not available,
the Code Counting Convention is logical, the phasing is unknown, and

 11) Code condition is unknown = 1.3360 Hrs/Total SLOC
 CV = 113%; CVest = 182%; n = 186

 12) Code condition is known = 1.8597 Hrs/ESLOC
 Efactor = 0.04; CV = 83%; CVest = 161%; n = 185

These factors should not be applied to programs written in more than 30 percent Assembly or to
MIS programs.

6.4 RECOMMENDATIONS

These top-level productivity factors should be applied if, and only if, contractor-specific data is
unavailable and the NCCA standard regressions are not appropriate (i.e. the program being
estimated does not meet NCCA’s normalization criteria). These factors should only be applied
as a last resort, rough order-of-magnitude estimate with the corresponding CVs clearly
identified. If the program is not sufficiently defined (which is typically the case during the very
early stages of its life cycle), then these factors may be applied for a quick, top-level estimate.
However, analysts must realize, and state, that the factors are very top-level and the resulting
estimates have large uncertainty bounds.

Table 6-7 provides a summary of the top-level non-normalized productivity factors. If the
analyst is forced to utilize the top-level productivity factors, NCCA suggests that a thorough

51The blanks in the New field must be eliminated manually. There is one program with zero percent new code. This data point
should be included in the data set, although LOTUS will eliminate it along with the blanks in the field.

Section 6 - Effort Analysis: Non-Normalized Productivity Factors

6 - 9

analysis of the data set underlying the factor be conducted to determine if the data set is truly
analogous to the program being estimated.

Application

Code
Condition
Unknown
(Hrs/Total

SLOC)

Code Condition
Known

(Hrs/ESLOC)

MIS; Primary language is an HOL 0.6913 0.8240
Weapon System ; >30% Assembly 2.6504 3.0093
Weapon System; 100% Assembly 3.7383 3.9904
Weapon System; Physical Code Count; >70% HOL 0.6357 0.7350
Weapon System; Code Count Unknown; >70% HOL 1.3238 1.6763
Weapon System; Logical Code Count; Phasing Unknown; >70% HOL 1.3360 1.8597

Table 6-7: Summary of Top-Level Productivity Factors

6.5 CONCLUSIONS

Since these factors were developed from a non-normalized data set, their weaknesses are
much greater than their strengths. Analysts should make every effort possible to obtain
contractor-specific data and to sufficiently define the program so that the use of these factors is
truly a last resort. For example, if the size of the program being estimated is provided in
physical SLOC, then historical programs which have collected metrics in physical SLOC should
be obtained and used. Specific strengths and weaknesses of the top-level productivity factors
are discussed below:

6.5.1 STRENGTHS

The strengths associated with the top-level factors are:

1) Language, mission and code condition (through the use of total SLOC and ESLOC) are

recognized productivity drivers in every factor.

2) Separate factors exist for programs written primarily in Assembly and HOL and separate
factors exist for MIS and weapon system programs.

3) The factors can be applied to both CSCI- and program-level data.

6.5.2 WEAKNESSES

The weaknesses associated with the top-level factors are:

1) Mode is a productivity driver, yet it is not addressed in any factor with the exception of the

physical code counting convention factors (which were developed from data sets consisting
entirely of embedded programs). The physical code counting convention factor may
overestimate effort if applied to non-embedded mode programs. All of the remaining factors
are based on a mixture of embedded and non-embedded mode programs. These factors
may underestimate effort if applied to 100 percent embedded mode programs, and

Section 6 - Effort Analysis: Non-Normalized Productivity Factors

6 - 10

overestimate effort if applied to 100 percent non-embedded mode programs. However,
programs are typically composed of both embedded and non-embedded CSCIs. If the
factors must be utilized, NCCA suggests that the mode composition of the data set
underlying the factor be thoroughly examined to determine if the mode of the program being
estimated is analogous.

2) Phasing is a productivity driver, yet phase-specific data sets were not used to develop any

of the factors. This means that the factors may underestimate or overestimate productivity,
depending on how the phasing of the program being estimated compares to the phasing of
the programs underlying the factor. If the top-level factors must be utilized, NCCA suggests
that the phasing composition of the underlying data set used to develop the applicable factor
be thoroughly examined to determine if the phasing of the program being estimated is
analogous.

3) The factors were developed from data sets containing some programs where the hours per

man-month rate was unknown. A 152-hours per man-month rate was assumed for these
programs. This adds additional uncertainty to the factors, since the productivity of those
programs was overestimated or underestimated if the actual hours per man-month utilized
was less than or greater than 152. If the top-level factors must be utilized, NCCA suggests
that the hours per man-month of the data set used to develop the applicable factor be
thoroughly examined to determine if the hours per man-month rate for the program being
estimated is analogous.

4) Factors are not contractor specific. As with the normalized standard NCCA regressions,

NCCA recommends that analogous contractor-specific data be obtained to minimize
variances.

5) Due to lack of data, there is no tool to estimate MIS programs sized by a physical code

count, or MIS programs written entirely in Assembly (although this type of program is highly
unlikely).

6) Use of these factors generates a significant amount of uncertainty since they are non-

normalized and have large CVs.

As stated previously, these top-level productivity factors should be applied if, and only if,
contractor specific data does not exist and the program being estimated does not satisfy
NCCA’s standard regression normalization criteria.

EFFORT ANALYSIS:

OVERALL PROCESS

NCCA’s recommended effort estimating process (illustrated in detail in Figure 7-1) consists of
four major steps.

Perform
Analysis

Number
of Data Points

> 10
?

Yes No

Perform
Regression

Analysis and
ESLOC

Calculation

Develop Factor
and

Perform ESLOC
Calculation

Analyze
Results

Is
Factor/CER

Sound
?

Yes

No

Apply
Factor/CER

Analyze
ResultsSTEP 3

Are
Results
Sound

?

Yes Other
Considerations

?

Analysis
Complete

Yes

Adjust
Estimate

No

No STEP 4

Develop
Tailored Tools

Uncertain

Additional
Data

?

YesNoDevelop
Standard Tools

Access Standard
Productivity Factors

or CERs

Select
Productivity Factor

or CER

Assess
Data

No Quality
High

?

Normalize
Data

Check
Software

Development
Plan

Yes

No

Source(s)
Selected

?

Crosscheck
with NCCA
Database

No

Proposed
Evaluation?

or
Predecessor

System?

YesAny
Matches

?

Yes Don’t
Add

Add to
NCCA

Database

No

Contractor-Specific
Database

Subset Plus
Additional Analogous

Data Points

STEP 1

STEP 2

Yes

Build Analogous
Database

Figure 7-1: Effort Estimating Process

Step 1: Determine whether tailored or standard tools will be utilized.

• If contractor-specific data exists, assess the quality and applicability of the data, normalize

7

Section 7 - Effort Analysis: Overall Process

7 - 2

the data and develop tailored (contractor- or domain-specific) tools following the processes
discussed in Sections 4-6.52

• If contractor-specific data is unavailable, proceed to Step 2.

Step 2: Determine whether NCCA standard regressions or factors will be utilized.

If the program’s

 Domain is weapon system,
 Counting convention is logical,
 Development language is an HOL,
 Development phases span SDR through FQT,
 Code condition is known,
 Development mode is known, and

Hours per man-month rate is known,

then the program satisfies NCCA’s normalization criteria and NCCA standard regressions
should be used as follows:

• If the program being estimated is 100 percent new, apply the following equation (revised
traditional program-level equation with the 100 percent new dummy variable enabled) at the
program-level:

Revised Traditional Program-Level Equation
Effort = 0.0012 * (New SLOC)[1.1979 + (0.0326 * D1)]

R2 = 0.96 Std Error = 0.42 Predict (20) = 58% N = 31 Range = 9 - 1,113 EKSLOC
where D1 equals one if the program is embedded and zero otherwise.

• If the program being estimated has greater than or equal to 82 percent reused code,
apply the following equation (revised traditional program-level equation with the percent
reused variable enabled) at the program-level:

Revised Traditional Program-Level Equation

 Effort = 0.0012 * [New SLOC + (1 * Reused SLOC)][1.0085 + (0.0326 * D1)]
R2 = 0.96 Std Error = 0.42 Predict (20) = 58% N = 31 Range = 9 - 1,113 EKSLOC

where D1 equals one if the program is embedded and zero otherwise.

• If the program being estimated is neither 100 percent new nor greater than or equal to 82
percent reused code, and the reused code is evenly distributed between modified and
verbatim code, apply the following equation (revised traditional program-level equation) at
the program-level:

52As depicted in Figure 5-1, if contractor-specific data is available, the analyst should develop “tailored” regressions, vice utilizing the
NCCA standard regressions. This data should also be added to the NCCA Database using the procedures referenced in Chapter 2
- Defining the Problem and provided in Appendix A, NCCA Historical Software Data Request Form’s Mapping Procedures.

Section 7 - Effort Analysis: Overall Process

7 - 3

Revised Traditional Program-Level Equation
Effort = 0.0012 * [New SLOC + (1 * Reused SLOC)][1.1067 + (0.0326 * D1)]

R2 = 0.96 Std Error = 0.42 Predict (20) = 58% N = 31 Range = 9 - 1,113 EKSLOC
where D1 equals one if the program is embedded and zero otherwise.

• If the program being estimated is neither 100 percent new nor greater than or equal to 82
percent reused code, and the reused code is predominantly verbatim, apply the following
equation (traditional CSCI-level equation) at the CSCI-level:

Traditional CSCI-Level Equation

Effort = 0.023 * [New SLOC + (0.03 * Reused SLOC)][0.8609 + (0.0315 * D1) + (0.0529 * D2)]
R2 = 0.77 Std Error = 0.67 Predict (20) = 26% N = 97 Range = 0.4 - 253.4 EKSLOC

where D1 equals one if the program is 100% new and zero otherwise; and D2 equals one if the program is embedded and zero otherwise

If the program does not satisfy NCCA’s normalization criteria, then NCCA standard productivity
factors should be utilized as follows:

If the program is MIS, and
 1) code condition is unknown, productivity = 0.6913 hrs/Total SLOC
 2) code condition is known, productivity = 0.8240 hrs/ESLOC; Efactor = 0

If the program is written significantly (>30%) in Assembly, and
 1) code condition is unknown, productivity = 2.6504 hrs/Total SLOC
 2) code condition is known, productivity = 3.0093 hrs/ESLOC; Efactor = 0.6

If the program is written entirely in Assembly, and
 1) code condition is unknown, productivity = 3.7383 hrs/Total SLOC
 2) code condition is known, productivity = 3.9904 hrs/ESLOC; Efactor = 0.69

If the counting convention is physical, and
 1) code condition is unknown, productivity = 0.6357 hrs/Total SLOC
 2) code condition is known, productivity = 0.7350 hrs/ESLOC; Efactor = 0

If the counting convention is unknown, and
 1) code condition is unknown, productivity = 1.3238 hrs/Total SLOC
 2) code condition is known, productivity = 1.6763 hrs/ESLOC; Efactor = 0.12

If the counting convention is logical, but phasing is unknown, and
 1) code condition is unknown, productivity = 1.3360 hrs/Total SLOC
 2) code condition is known, productivity = 1.8597 hrs/ESLOC; Efactor = 0.04

Step 3: Analyze results for reasonableness.
Step 4: Consider other conditions that may affect productivity (such as those discussed in the
NCCA issue papers).

As discussed above, NCCA’s recommended effort estimating process requires the analyst to
apply standard regressions or factors if contractor specific data is not available. Table 7-1
compares the performance of these standard regressions and factors. The same database

Section 7 - Effort Analysis: Overall Process

7 - 4

used in Section 5 - Effort Analysis: Normalized Regressions is displayed; however, in this
case, the appropriate cost estimating tool is applied (i.e., if the program was written in
Assembly, then the Assembly factor was utilized). The regressions clearly outperform the
productivity factors (Predict (20) equals 88 percent for regressions versus seven percent for
factors, and the corresponding MAD equals 13 percent for regressions versus 73 percent for
factors). Hence, the factors should only be used as a last resort in any cost estimating
scenario.

Table 7-1: Regression versus Factor Performance

Overall Software Development Cost Estimating Comparison

PROGRAM TOTAL NEW NOT NEW MOD NCCA ACTUAL
NAME LOC LOC LOC LOC METHODOLOGY USED ESTIMATE EFFORT DELTAS NOTES

NCCA-067 11,036 11,036 0 0 Physical Count Prod Factor 53 27 95.90% From Navy Internal Data, Count was physical
NCCA-286 134,700 134,700 0 0 Top level Prod Factor 1,486 2,563 -42.00% From Silver DB, Count, hrs/mm,scope of effort unknown
NCCA-287 57,000 57,000 0 0 Top level Prod Factor 629 1,720 -63.50% From Silver DB, Count, hrs/mm,scope of effort unknown
NCCA-291 58,504 8,893 49,611 2,223 Top Level CSCI CER w 100% new & Emb dummies 76 73 4.80% From SEL, Included in normalized DB
NCCA-315 74,770 37,759 37,011 8,075 Logical Count, Unknown Phases Prod. Factor 480 164 192.70% Actual effort does not include requirments
NCCA-347 95,120 95,120 0 0 Logical Count, Unknown Phases Prod. Factor 1,164 642 81.30% Actual effort does not include requirements
NCCA-367 114,361 99,952 14,409 10,407 Top Level Program (Revised) 493 497 -0.70% From SEL, Included in normalized DB
NCCA-409 204,000 163,200 40,800 15,503 Top Level CSCI CER w 100% new & Emb dummies 1,326 1,231 7.70% Mitre Non-Ada DB, Included in normalized DB
NCCA-410 185,600 30,253 155,347 155,347 Top Level Program (Revised) 380 335 13.50% Mitre Non-Ada DB, Included in normalized DB
NCCA-411 210,000 40,000 170,000 20,000 Physical Count Prod Factor 193 154 25.90% From Navy Internal Data, Count was physical
NCCA-417 231,870 231,870 0 0 Top Level Program (Revised) 4,979 5,103 -2.40% Mitre Non-Ada DB, Included in normalized DB
NCCA-418 234,130 144,458 89,672 0 Top Level CSCI CER w 100% new & Emb dummies 1,252 2,350 -46.70% Mitre Non-Ada DB, Included in normalized DB
NCCA-422 254,142 158,036 96,106 96,106 Logical Count, Unknown Phases Prod. Factor 1,981 4,421 -55.20% From SMC DB, Evolutionary Program
NCCA-425 263,179 263,179 0 0 Top level Prod Factor 2,902 5,244 -44.70% From Silver DB, From Silver DB,From Silver DB,
NCCA-427 267,900 98,587 169,313 0 Top level Prod Factor 1,311 864 51.90% From Silver DB, Count, hrs/mm,scope of effort unknown
NCCA-428 283,500 245,511 37,989 0 Top level Prod Factor 2,758 1,944 41.80% From Silver DB, Count, hrs/mm,scope of effort unknown
NCCA-431 334,704 334,704 0 0 >30% Assembly Prod Factor 6,626 7,592 -12.70% Mitre Non-Ada DB, Included in normalized DB

NCCA-435 338,088 157,887 180,201 180,201 >30% Assembly Prod Factor 5,266 1,850 184.70% Mitre Non-Ada DB, Included in normalized DB
NCCA-441 422,552 422,552 0 0 Logical Count, Unknown Phases Prod. Factor 5,170 2,920 77.10% Program was concept exploration
NCCA-454 1,113,000 556,500 556,500 556,500 Top Level Program (Revised) 9,637 10,976 -12.20% Mitre Non-Ada DB, Included in normalized DB
NCCA-456 1,420,872 1,406,663 14,209 14,209 Physical Count Prod Factor 6,802 4,652 46.20% From Navy Internal Data, Count was physical
NCCA-458 1,997,934 933,575 1,064,359 0 Top Level CSCI CER w 100% new & Emb dummies 9,587 8,193 17.00% From Navy Internal, Included in normalized DB

MAD 50.90%
 P(20) 36.40% General Methodology

%Above 0 59.10%
%Below 0 40.90%

P(20) 87.50%
MAD 13.10% CER portion of Methodology
%Above 0 62.50%
%Below 0 37.50%

P(20) 7.10%
MAD 72.50% Productivity Portion of Methodology
%Above 0 71.40%
%Below 0 28.60%

SCHEDULE ANALYSIS

8.1 INTRODUCTION

The purpose of this section is to describe the methodology and procedures used to develop a
software schedule estimating tool. In recent years, the importance of the software development
schedule has increased because it is often on the critical path in weapon system developments.
However, software schedule estimates tend to be optimistic, with programs typically
experiencing between 20 and 60 percent schedule growth. Typical reasons for schedule growth
include changes in requirements, unrealistic project planning, and staffing problems.
Regardless of the reason for the delay or slip in schedule, it will ultimately result in cost growth.

NCCA has developed both top-level factors and schedule estimating relationships that estimate
schedule in months. The methodology and recommended approaches are addressed below.
However, these recommended approaches should only be used when additional analogous or
contractor specific data are not available. The following subsections will describe the schedule
analysis:

• NCCA Schedule Databases
• Methodology and Results
• Recommendations
• Conclusions
• Future Efforts

8.2 NCCA SCHEDULE DATABASES

Similar to the effort databases, NCCA created a separate schedule database to support
schedule analyses. The detailed methodology will be provided below.

8.2.1 GROUND RULES AND ASSUMPTIONS

The general ground rules and assumptions followed to create the NCCA Schedule Database
are:

1) Only program-level data points were used for the NCCA Schedule Database.
2) The schedule dates were assumed to be the midpoint of the month.
3) All SLOC are logical code.
4) All programming languages, except Assembly, were defined as HOL.

8

Section 8 - Schedule Analysis

8 - 2

8.2.2 RAW SCHEDULE DATABASE

The NCCA Raw Schedule Database is a subset of the NCCA Raw Database detailed in Section
3 - Software Database. A record in the NCCA Raw Database contains 73 data fields; however
only 48 of the 73 data fields were used in the NCCA Raw Schedule Database. Of the 48 data
fields, the following fields (see Section 3 – Software Database for definitions) were
predominantly used:

 1) Program name
 2) Platform
 3) Program- or CSCI-level
 4) Size (total SLOC)
 5) Programming language
 6) Effort expended (man-months)
 7) Duration (total schedule in calendar months)
 8) Acquisition period
 9) Code counting convention
10) Software development phase

A query of the NCCA Raw Database (references [5] through [7]) was performed and a total of
151 program-level data points, which included schedule as well as effort, were obtained. These
151 data points were screened to identify those having schedule dates from SDR through FQT.
Thirty-seven of the 151 points met this criterion and were retained. These data points
constituted the NCCA Raw Schedule Database.

The 37 data points were a mixture of HOL and Assembly language programs. The mission
types included C3, radar, missile, ASW, and simulation programs installed on air, ship, and
ground platforms. The total SLOC ranged from 2.3 to 1,113 KSLOC and total development
effort ranged from 11 to 10,976 man-months. The associated schedule ranged from 5 to 74
months, with a mean schedule of 27.9 months.

See Appendix E for a description of the data points in the NCCA Raw Schedule Database.

8.2.3 NCCA NORMALIZED SCHEDULE DATABASE

The 37 data points in the NCCA Raw Schedule Database were then screened to obtain the
NCCA Normalized Schedule Database. The criteria for the NCCA Normalized Schedule
Database were: 1) the effort occurred from SDR through FQT and 2) the hours per man-month
were known and converted to 152 hours per man-month. One data point was eliminated
because the hours per man-month rate was unknown. Four additional points were deleted
because the effort included the SIT phase or the OTE phase, which are outside the SDR
through FQT scope of effort. Finally, 16 additional data points were deleted because the
Software Requirements Analysis Phase (SDR-SSR) was not included in the effort, leaving 16
normalized data points (i.e., effort and schedule from SDR through FQT).

The 16 normalized data points, see Appendix E, were a mixture of HOLs (e.g., Fortran, Jovial,
CMS-2) and Assembly language programs. However, none of the programs were written in
Ada. The mission types are characterized as C3, radar, and simulation programs, which were

Section 8 - Schedule Analysis

8 - 3

installed on air, ship, and ground platforms. The total SLOC ranged from 20 to 1,113 KSLOC,
and total development effort ranged from 157 to 10,976 man-months. The associated schedule
ranged from 12 to 74 months. The mean schedule was 33 months.

Figure 8-1 shows the filtering process that resulted in the NCCA Raw Schedule and NCCA
Normalized Schedule Databases used in developing the software schedule regressions.

Schedule not
SDR to FQT 114

Program Level
151

Schedule
SDR to FQT 37

NCCA Raw Schedule Database

Effort Hrs/MM
Unknown 1

Effort Hrs/MM
Known 36

Effort contains
SIT/OTE 4

Effort doesn’t contain
SIT/OTE 32

Effort
SDR to FQT 16

Schedule and Effort
 SDR to FQT 16

Normalized Database

Figure 8-1: NCCA Schedule Databases

Since the NCCA Normalized Schedule Database was small (N = 16), the Mann-Whitney U test,
a non-parametric test, was performed to determine if the non-normalized and normalized data
points could be combined. The Wilcoxon Two-Sample test was performed to determine
whether the data points within the NCCA Normalized Schedule Database should be separated
due to language or mode differences. Essentially, these non-parametric tests compared and
tested the means of both samples to determine if they were from the same population and
could, be combined into one database. Additional information about these non-parametric tests
is available in Appendix C and references [14] and [19].

The results of the Mann-Whitney U Test indicated that non-normalized and normalized data
points should not be combined. Results of this test are found in Appendix E.

The Wilcoxon Two-Sample test was performed on the NCCA Normalized Schedule Database
(N = 16). The results indicated that the HOL and Assembly language data points should remain
combined. Results of this test are found in Appendix E.

The Wilcoxon Two-Sample test was also performed on the NCCA Normalized Schedule
Database to determine if the two semi-detached programs and 14 embedded programs were
from the same population. Even though there were so few data points, the results indicated that
the semi-detached and embedded programs could remain combined. Results of this test are
found in Appendix E.

Section 8 - Schedule Analysis

8 - 4

Based on the non-parametric test results summarized above, the final NCCA Normalized
Schedule Database consisted of all 16 data points, with HOL and Assembly languages and
semi-detached and embedded modes combined. This database was used to develop the
factors and schedule estimating relationships. The NCCA Normalized Schedule Database is
shown in Table 8-1.

Record Platform Type Mission Area Lang1 Total SLOC Total Man-Months Total Months
NCCA-146 Radar CMS-2 20,276 241 32
NCCA-183 Ground C3 EDL 26,200 289 28
NCCA-284 C3 Fortran 56,021 157 17
NCCA-298 Ground C3 Assembly 63,944 469 12
NCCA-360 C3 Fortran 102,806 1222 32
NCCA-390 C3 Fortran 139,527 586 25
NCCA-404 Ground SIM ? 169,000 704 21
NCCA-409 Ship Radar Jovial 185,600 335 25
NCCA-410 Ship Radar Jovial 204,000 1231 32
NCCA-417 Ground C3 CMS-2 231,870 5103 74
NCCA-418 Radar Jovial 234,130 2350 39
NCCA-426 Air C3 Fortran 263,992 6496 42
NCCA-429 Air C3 Assembly 285,400 1326 22
NCCA-431 C3 Assembly 295,196 7592 70
NCCA-435 C3 Fortran 338,088 1850 21
NCCA-454 C3 Jovial 1,113,000 10976 40

Table 8-1: NCCA Normalized Schedule Database

The primary strength of the NCCA Normalized Schedule Database is that it includes only
programs that had effort and schedule from SDR through FQT. Another strength is that the
schedule range is robust; it includes programs ranging from one to six years, 20 to 1,113
KSLOC and various mission types, including both C3 and radar systems. The weaknesses
include: 1) 14 of the 16 data points’ are embedded mode; 2) there are no Ada data points; 3)
the data points represent older programs (late 1970s through mid-1980s); and 4) the data points
are extracted from only one source database (MITRE Non-Ada Database).

8.3 METHODOLOGY AND RESULTS

Using the NCCA Normalized Schedule Database, two analytical approaches (factors and
equations) were investigated.

8.3.1 APPROACH ONE

To develop factors, the mean and median statistics for schedule in total calendar months, effort
in total MM, and size in KSLOC were calculated. Appendix E contains the non-parametric tests
performed on these data sets. Table 8-2 shows the results. The means and medians were
then utilized to partition the database (e.g., programs less than or equal to the median KSLOC
versus programs greater than the median KSLOC). As shown in Table 8-3, the mean schedule
in months, the Predict (20) and the associated CVest were calculated for each partition. (See
Appendix C for a discussion of the CVest calculation and Appendix E for supporting
spreadsheets.) The recommended schedule estimating approach was selected based on the
partition that minimized the CV or CVest.

Section 8 - Schedule Analysis

8 - 5

Months Range = 12 to 74 Mean = 33 Months
 Median = 30 Months

KSLOC Range = 20 to 1,113 Mean = 233 KSLOC
 Median = 195 KSLOC

Man-Months Range = 157 to 10,976 Mean = 2558 MM
 Median = 1227 MM

Table 8-2: NCCA Normalized Schedule Database Partitions

 Partitions N Mean (Months) CVest PREDICT (20)
1 All Programs 16 33 0.54 0.38
 Programs ≤ 233 KSLOC (Mean KSLOC) 10 30
2 0.52 0.56
 Programs > 233 KSLOC (Mean KSLOC) 6 39
 Programs ≤ 195 KSLOC (Median KSLOC) 8 24
3 0.45 0.44
 Programs > 195 KSLOC (Median KSLOC) 8 43
 Programs ≤ 1227 MM (Median MM) 8 24
4 0.45 0.44
 Programs > 1227 MM (Median MM) 8 43
 Programs ≤ 2558 MM (Mean MM) 12 26
5 0.32 0.50
 Programs > 2558 MM (Mean MM) 4 57

Table 8-3: Statistical Results of Partitions

Partition 5 has the smallest resulting CVest and the following results:

1) For programs with Estimated Effort ≤ 2558 MM: Schedule = 26 months
2) For programs with Estimated Effort > 2558 MM: Schedule = 57 months

CVest = 32%, n = 16, Predict (20) = 50%

The resulting Predict (20) indicates that 50 percent of the schedules estimated with these
factors were within 20 percent of the actual schedules.

The primary strength of the factors is the associated statistics. The residuals of the factors
appeared to show no bias, and the approach is simple and easy to use. Also the factors
broadly distinguish between large and small programs; however, the lack of sensitivity within the
broad groupings is a primary weakness of this approach (i.e., the factors estimate the same
schedule for a program with effort equal to 2559 man-months as they do for a program with
effort equal to 4000 man-months). Finally, the factors may not be good estimators for Ada data
points because the database has no Ada data points. However, NCCA has not found any
documented evidence that suggests language impacts the software development schedule.

8.3.2 APPROACH TWO

In addition to factors, regressions were investigated. Linear as well as exponential and power
equations were developed with the exponential form showing the most promise. In all of the
regressions, the dependent variable was actual schedule expressed in calendar months. The
independent variables included total effort in man-months, and total SLOC, ESLOC, or
productivity (man-months/ESLOC). Based on the results of the analysis in Section 4 - Effort
Analysis: Significant Drivers, dummy variables included mode (i.e., embedded versus semi-
detached) and code condition (i.e., 100 percent new programs versus not 100 percent new

Section 8 - Schedule Analysis

8 - 6

programs). Additionally, NCCA developed regressions, which included various percent reused,
and KSLOC trade-offs.

NCCA analyzed the regressions and determined the most promising ones. Only significant
regressions (at the 95 percent confidence level) were considered. The list of non-significant
equations and their associated statistics is shown in Appendix E. The following six significant
normalized equations remained. They are divided into the following categories: 1) traditional
equations, where software schedule is a function of estimated effort in man-months and 2) non-
traditional equations, where schedule is a function of estimated size in ESLOC. Similar to the
effort analysis (Sections 4 through 7), NCCA quantitatively solved for the Efactor which
converted reused code to equivalent new code, while minimizing the standard error. Appendix
E contains the regression plots and residual analyses for equations [8-1] through [8-6].

Traditional Equations: Actual Schedule = ƒ(Estimated Effort)

Schedule (Months) = 4.87 * (MM)0.2556
R2 = 0.50; CV = 0.35; Predict (20) = 44%; Range = 241 - 10,976 MM

Schedule (Months) = 5.12 * (MM)0.2266 * e(0.3574 * D1)

R2 = 0.64; CV = 0.31; Predict (20) = 44%; Range = 241 - 10,976 MM
where dummy variable D1 = 1 for programs 100% New and 0 otherwise

Schedule (Months) = 6.50 * (MM)0.2320 * e (-03883 * D1)

R2 = 0.65; CV = 0.30; Predict (20) = 50%; Range = 241 - 10,976 MM
where dummy variable D1 = 1 for programs with %Reuse > 39% and 0 otherwise

Schedule (Months) = 5.01 * (MM)0.3205 * e (-0.5580 * D1)

R2 = 0.63; CV = 0.31; Predict (20) = 56%; Range = 241 - 10,976 MM
where dummy variable D1 = 1 for programs with KSLOC > 30 and 0 otherwise

Non-Traditional Equations: Actual Schedule = ƒ(Estimated ESLOC)

Schedule (months) = 2.16 * (ESLOC)0.2270
R2 = 0.28; CV = 0.42; Predict (20) = 44%; Efactor = 0; Range = 20 - 557 KSLOC

 Schedule (Months) = 1.32 * (ESLOC)0.2439 * e (0.5389 * D1)

R2 = 0.52; CV = 0.35; Predict (20) = 50%; Efactor = 0.52; Range = 20 - 557 KSLOC
where dummy variable D1 = 1 for programs 100% new and 0 otherwise

Equations [8-3] and [8-4] had the best statistical attributes of the six equations. However, upon
a more detailed analysis of equation [8-3]’s residuals, it appears that the regression is biased. It
consistently overestimated the very small and very large points, and consistently
underestimated those in between. Thus, this equation was eliminated from further
consideration. Equation [8-4]’s dummy variable is based on only two data points (i.e., there are
only two data points with SLOC less than 30,000), so it was also eliminated from further
consideration.

[8-1]

[8-2]

[8-3]

[8-5]

[8-6]

[8-4]

Section 8 - Schedule Analysis

8 - 7

Of the remaining four equations, equation [8-2], the traditional schedule estimating equation with
a 100 percent dummy variable had the best statistical attributes. A review of the residuals
uncovered no apparent bias. Furthermore, equation [8-2] generates estimates that are
comparable to those produced by other traditional schedule estimation models (e.g., COCOMO,
REVIC, etc.). Table 8-4 compares the equation [8-2] estimate and several other models’
estimates for a 100 man-month effort. The average schedule estimate for the first 11 models in
this example is 15 months. The schedule estimates ranged from 10 to 21 months. Barry
Boehm’s latest COCOMO II schedule equation, which incorporates the latest software methods
(unlike the first 11), estimates the schedule for the 100 man-months effort between 14 and 17
months. Equation [8-2] resulted in an estimate of 15 months (assuming the program is not 100
percent new) or 21 months (assuming the program is 100 percent new). These results were
comparable to the range of estimates generated by the other estimating models. Additionally,
equation [8-2] captured one of the significant drivers (i.e., code condition) highlighted in Section
4 - Effort Analysis: Significant Drivers.

Reference Equation Schedule Months53
Freburger and Basili, 1979 TDEV = 4.38 * (MM)0.25 14
COCOMO: Embedded Mode TDEV = 2.5 * (MM)0.32 11
Putnam, 1978: Minimal Schedule TDEV = 2.15 * (MM)0.333 10
COCOMO: Semi-detached Mode TDEV = 2.5 * (MM)0.35 13
Walston and Felix, 1977 TDEV = 2.47 * (MM)0.35 12
Nelson, 1978 TDEV = 3.04 * (MM)0.36 16
COCOMO: Organic Mode TDEV = 2.5 * (MM)0.38 14
REVIC: Ada Mode TDEV = 4.376 * (MM)0.32 19
REVIC: Organic Mode TDEV = 3.65 * (MM)0.38 21
REVIC: Semi-detached Mode TDEV = 3.8 * (MM)0.35 19
REVIC: Embedded Mode TDEV = 4.376 * (MM)0.32 19
 Average = 15
COCOMO 2.0 TDEV = [3.0 * (MM) (0.33 + 0.2 * (B - 1.01))] * (%Schedule/100)54 14 to 17
Equation [8-2] TDEV = 5.12 * (MM)0.2266 * e (D

1 *
0.3574) 15 or 21

Table 8-4: Comparison of Equation [8-2] to Other Traditional Schedule Estimation Models

8.4 RECOMMENDATIONS

The factors derived from Partition 5 in Table 8-3 and the traditional equation [8-2] have similar
statistics, but the traditional equation [8-2] is slightly better. This fact combined with the
insensitivity of the factors (i.e., they estimate the same schedule for a program with effort equal
to 2559 man-months as they do for one equal to 4000 man-months), leads NCCA to
recommend using equation [8-2]:

 Schedule (Months) = 5.12 * (MM)0.2266 * e (0.3574 * D1)

R2 = 0.64; CV = 0.31; Predict (20) = 44%; Range =157 - 10,976 MM
where dummy variable D1 = 1 for programs 100% new and 0 otherwise

53Estimate based on effort estimate of 100 man-months.
54Where B = 1.01 or 1.26 based on the COCOMO 2.0 documentation.

[8-2]

Section 8 - Schedule Analysis

8 - 8

Figure 8-2 illustrates the software schedule estimating process.

Figure 8-2: Recommended Software Schedule Estimating Process

8.5 CONCLUSIONS

A schedule estimate is an important aspect in developing a software estimate because it
impacts both the effort required and the program risk.55 In this section, two schedule estimating
methodologies (factors and estimating relationships) were developed to estimate schedule.
These tools are based on a relatively small database of programs from one data source.
Therefore, they may not reflect an industry average and should be used with caution. Although
these factors and equations were developed from a small database, the statistics associated
with the recommended tool are satisfactory and the underlying database represents a wide
range of program sizes. Because software schedules are often influenced by external factors
such as budget cuts or requirements creep, they will remain difficult to estimate. However,

55Refer to the NCCA Issue Paper “The Impacts of Schedule Compression/Slippage/Stretch-Out on the Software Development
Schedule” for a discussion of this topic.

Effort Estimate
Input

Are
Additional

Data
Available?

N
o

Develop Schedule
Estimate Using

Standard Schedule
Regression [8-2]

Ye
s

Develop
Tailored
Schedule

Regression

Develop Schedule
Estimate Using

Tailored Schedule
Regression

Normalize Data

STOP

Section 8 - Schedule Analysis

8 - 9

NCCA has identified several parameters which impact schedule, and which should be
considered when developing a software development schedule estimate. As with the effort
analysis, NCCA’s recommendation is that this methodology be used only when contractor-
specific data, appropriate for developing tailored equations, is not available.

8.6 FUTURE EFFORTS

A future goal is to collect additional data to improve schedule regressions. The NCCA
Normalized Schedule Database would be improved if the following data were collected:

1) Elapsed time between effort phases.
2) Dates for software-related reviews and phases.
3) MIS program schedule data.

LABOR RATE ANALYSIS

9.1 INTRODUCTION

This section of the handbook delineates how NCCA collected, analyzed, and normalized Cost
Performance Report (CPR) and Contractor Cost Data Report (CCDR) data for use in developing
an effort-to-cost/price estimating methodology and tool. The methodology used to develop the
effort-to-cost estimating tool is described in the following subsections:

• NCCA Labor Rate Databases
• Methodology and Results
• Recommendations
• Conclusions
• Additional Considerations
• Future Efforts

9.2 NCCA LABOR RATE DATABASES

NCCA also created a separate labor rate database to support the development of software
specific man-year rate analyses. The detailed methodology will be discussed below.

9.2.1 GROUND RULES AND ASSUMPTIONS

Provided below are the ground rules and assumptions utilized to develop the NCCA Labor Rate
Databases:

1) NCCA retained only those programs (or data points) that were at least 90 percent complete.

It was assumed that a program, which has expended 90 percent of its estimate at
completion (as portrayed in the CCDR forms) is at least 90 percent complete.

2) The man-hours of effort reported for the EMD Phase covered the software development life

cycle, defined as SDR through FQT (See Figure 3-3).

3) For CPR data points that reported effort in man-months, NCCA assumed a 152-hours per

man-month rate for the conversion from man-months to hours.

4) Since DoD-STD-2167A went into effect in 1985, NCCA made the assumption that contracts

awarded prior to 1985 were pre-DoD-STD-2167A and contracts awarded in 1985 and after
were post-DoD-STD-2167A. There is the possibility, though, that a contractor received a
waiver to utilize a previous standard after 1985.

5) The software costs expended were assumed to be then-year dollars based on the year of

the contract. For example, if program X's contract number was N00019-88-C-0001, then

9

 Section 9 – Labor Rate Analysis

9 - 2

program X's software cost was assumed to be in then-year 1988 dollars. All labor hours
were normalized to thousands of hours and all costs were normalized to constant FY97$K,
using NCCA's RDT&EN (Purchases) weighted indices, dated March 1996.

9.2.2 DATA SOURCES

NCCA collected software cost data from CCDRs and CPRs, which provided actual cost in
addition to other data, for the NCCA Raw Labor Rate Database. Figure 9-1 is an example of a
CCDR 1921 form, which reports cost-to-date, as well as, cost-at-completion estimates. Figure
9-2 is an example of a CCDR 1921-1 form, which reports man-hours by WBS element to date
and at completion by functional category. NCCA used the shaded elements from Figures 9-1
and 9-2 for the labor rate analysis. The most essential elements were the estimated software
cost at completion, located on both Figures 9-1 and 9-2, and the total software labor hours
estimated at completion found in Figure 9-2. To cross-check, NCCA ensured the 1921 software
at completion cost was equal to the 1921-1 software at completion cost.

A CPR reports cost by WBS element. Format 1 of a CPR (Figure 9-3) reports the top-level cost
for the program by WBS element. Format 4 of a CPR (Figure 9-4) reports man-months
expended to date and at completion. The shaded elements in Figures 9-3 and 9-4 are inputs
into the database. The most essential elements are the software’s latest revised estimate (LRE)
at completion in Figure 9-3 and the estimate at completion man-months for software in Figure 9-
4.

Figure 9-1: Contractor Cost Data Report, 1921

C O N T R A C T C O S T 1 . ' P R O G R A M / C O N T R A C T N O . : 2 . (X) C O N T R A C T 3 . (X) R D T & E () P R O D 5. REPORT AS OF

D A T A R E P O R T (C C D R) EX A /C /N00019-89 -C-6083 () R F P 4 . MULT IPLE CONTRACT 30 JUNE 1989

(DOLLARS IN THOUSANDS) () P R O G R A M E S T (X) YES () NO 6. FY FUNDED: 1990

7 . CONTRACT TYPE: 8 . C O N T R A C T P R I C E 9. CONTRACT CEILING 10. (X) PRIME () SUB 1 1 . N A M E O F C U S T O M E R

XYZ, INC. (SUBCNTR USE ONLY)

CPIF 208,847 210,000 XYZ, VIRGINIA

T O D A T E AT COMPLET ION

C O N T R A C T COSTS INCURRED COSTS INCURRED

LINE R E P O R T I N G E L E M E N T S ELEMENT NON- N O N -

ITEM C O D E R E C U R R I N G R E C U R R I N G T O T A L UNITS R E C U R R I N G R E C U R R I N G T O T A L

A B C D E F G H I J

100 H / W 2 94000 0 94000 101000 0 101000

200 S / W 2 80000 0 80000 85000 0 85000

300 ILS 2 930 0 930 1200 0 1200

M A N U F A C T U R I N G C O S T 174930 0 174930 187200 0 187200

G&A 17493 0 17493 18720 0 18720

COM 2099 0 2099 2246 0 2246

F E E 19242 0 19242 20592 0 20592

T O T A L P R I C E 213764 0 213764 228758 0 228758

R E M A R K S

N A M E O F P E R S O N T O B E C O N T A C T E D S I G N A T U R E D A T E

J O E S M I T H , M A N A G E R 3 JUL 89

DD FORM 1921 GO7011-02

 Section 9 – Labor Rate Analysis

9 - 3

Figure 9-2: Functional Cost-Hour Report, 1921-1

FUNCTIONAL COST-HOUR REPORT 1 . PROGRAM: EX A /C 2. REPORT AS OF

30 JUNE 1989

3. DOLLARS IN 4. HOURS IN 5. (X) CONTRACT () PROGRAM EST () RFP

THOUSANDS THOUSANDS

6. () NON-RECURRING () RECURRING (X) TOTAL 7. (X) RDT&E () PROD () OTHER

8. MULTIPLE YEAR CONTRACT 10. (X) PRIME () SUBCONTRACTOR 11. NAME OF CUSTOMER

(X) YES () NO XYZ, INC. (SUBCNTR USE ONLY)

9. FY FUNDED XYZ, VIRGINIA

1990

12. REPORTING ELEMENT(S)

200 SOFTWARE

ADJUST- SUBCONTRACT OR OUT-

M E N T S T O CONTRACTOR SIDE PROD AND SERV T O T A L

FUNCTIONAL CATEGORIES PREVIOUS

R E P O R T S TO DATE A T C O M P L TO DATE A T C O M P L T O D A T E A T C O M P L

A B C D E F G

ENGINEERING

1. D IRECT LABOR HOURS 1 0 0 5000 4600 5000

2. DIRECT LABOR DOLLARS $ $ 5 0 0$ 20 ,000 $ $ $ 19,250 $ 20,000

3. OVERHEAD $ $ 1400$ 45 ,000 $ $ $ 44,500 $ 45,000

4 . MATERIAL $ $ 1 0 0$ 5 ,000 $ $ $ 4,750 $ 5,000

5. OTHER DIRECT CHARGES (Specify) $ $ 0 $ 0 $ $ $ 0 $ 0

6. TOTAL ENGINEERING DOLLARS $ $ 2 , 000 $ 70 ,000 $ $ $ 68,500 $ 70,000

TOOLING

7. D IRECT LABOR HOURS 1699 2000 1699 2000

8. DIRECT LABOR DOLLARS $ $ 3,940 $ 4 ,000 $ $ $ 3,940 $ 4,000

9. OVERHEAD $ $ 5,550 $ 6 ,000 $ $ $ 5,550 $ 6,000

10. MATERIAL $ $ 0 $ 0 $ $ $ 0 $ 0

11. OTHER DIRECT CHARGES (Specify) $ $ 0 $ 0 $ $ $ 0 $ 0

12. TOTAL TOOLING DOLLARS $ $ 9,490 $ 10 ,000$ $ $ 9,490 $ 10,000

QUALITY CONTROL

13. DIRECT LABOR HOURS 2 5 0 364 250 364

14. DIRECT LABOR DOLLARS $ $ 300 $ 5 0 0 $ $ $ 300 $ 500

15. OVERHEAD $ $ 600 $ 1 , 0 0 0$ $ $ 600 $ 1,000

16. OTHER DIRECT CHARGES (Specify) $ $ 25 $ 0 $ $ $ 25 $ 0

17. TOTAL QUALITY CNTRL DOLLARS $ $ 925 $ 1 , 5 0 0$ $ $ 925 $ 1,500

MANUFACTURING

18. DIRECT LABOR HOURS 6 5 0 1000 650 1000

19. DIRECT LABOR DOLLARS $ $ 600 $ 1 ,000 $ $ $ 600 $ 1,000

20. OVERHEAD $ $ 1 ,000 $ 2 ,500 $ $ $ 1 ,000 $ 2,500

21 . MATRL AND PURCHASED PARTS $ $ 485 $ 0 $ $ $ 485 $ 0

22. OTHER DIRECT CHARGES (Specify) $ $ 0 $ 0 $ $ $ 0 $ 0

23. TOTAL MANUFACTORING DOLLARS $ $ 2,085 $ 3 ,500 $ $ $ 2,085 $ 3 ,500

24 . PURCHASED EQUIPMENT $ $ 0 $ 0 $ $ $ 0 $ 0

25. MATERIAL OVERHEAD $ $ 0 $ 0 $ $ $ 0 $ 0

26. Other Costs Not Shown Elsewhere $ $ 0 $ 0 $ $ $ 0 $ 0

27. TOTAL COST LESS G&A $ $ 81 ,000 $ 85 ,000 $ $ 81,000 $ 85,000

28. G&A $ $ 8 ,100 $ 8 ,500 $ $ $ 8 ,100 $ 8 ,500

29. TOTAL COST PLUS G&A $ $ 89 ,100 $ 93 ,500 $ $ $ 89,100 $ 93,500

30. FEE OR PROFIT/COM $ $ 9,882 $ 10 ,370$ $ $ 9,882 $ 10,370

31. TOTAL OF LINES 29 AND 30 $ $ 98,982 $ 103,870 $ $ $ 98,982 $ 103,870

DIRECT LABOR MAN-HOURS INCURRED THIS REPORT PERIOD

ENGINEERING TOOLING QUALITY CONTROL MANUFACTORING

A B C D

1. TOTAL BEG OF PERIOD

2.

3.

4.

5.

6 TOTAL END OF PERIOD

DD FORM 1921-1 GO7011-02

 Section 9 – Labor Rate Analysis

9 - 4

Figure 9-3: Cost Performance Report, Format 1

Figure 9-4: Cost Performance Report Manpower Loading Report, Format 4

Cost Performance Report - Work Breakdown Structure

Contractor: XYZ, INC. Contract Type/No.: Program Name: Report Period: Signature, Title & Date: FORM APPROVED BY:

Location: XYZ, VA CPIF EX A/C 30 JUNE 1989 OMB NUMBER 00000000000000000

RDT&E (X) PROD () N00018-88-C-6083

Quantity Negot. Est Cost Auth TGT PRFT/ TGT Est Price: Share Ratio: Contract Ceiling: Est Ceiling:

Cost: Unpriced Work FEE PCT Price:

209,110 0 11% 0 0 0%/100% 210,000 0

CURRENT CUMULATIVE TO DATE AT COMPLETION

WBS BUDGETED COST ACTUAL VARIANCE BUDGETED COST ACTUAL VARIANCE LATEST

EX/AC WORK WORK COST WORK WORK WORK COST WORK REVISED

SCHED PERF PERF SCHED COST SCHED PERF PERF SCHED COST BUDGET ESTIMATE VARIANCE

WBS

100 H/W 2502 1349 3172 -1153 -1823 100000 96000 94000 -4000 2000 96500 101000 4500

200 S/W 3000 2000 3500 -1000 -1500 82000 81000 80000 -1000 1000 75500 85000 9500

300 ILS 200 100 250 -100 -150 1000 950 930 -50 20 975 1200 225

FACTORY COST 5702 3449 6922 -2253 -3473 183000 177950 174930 -5050 3020 172975 187200 14225

COST OF MONEY 68 41 83 -27.036 -42 2196 2135 2099 -60.6 36.24 2076 2246 170.7

GEN AND ADMIN 570 345 692 -225.3 -347 18300 17795 17493 -505 302 17298 18720 1422.5

UNDISTRIBUTED BUDGET

SUBTOTAL 6341 3835 7697 -2505 -3862 203496 197880 194522 -5616 3358 192348 208166 15818

PROFIT 627 379 761 -248 -382 20130 19575 19242 -556 332 19027 20592 1565

UNASSIGNED FUNDS

TOTAL 6968 4215 8459 -2753.166 -4244 223626 217455 213764 -6171.1 3690.4 211375 228758 17382.95

(DOLLARS IN THOUSANDS)

FORMAT 1

C O S T P E R F O R M A N C E R E P O R T - M A N P O W E R L O A D I N G

CONTRACTOR: XYZ, INC.C O N T R A C T T Y P E / N U M B E R : P R O G R A M N A M E : REPORT PERIOD: F O R M A P P R O V E D B Y :

LOCATION: XYZ, VA C P I F E X A / C 30 JUNE 1989 O M B N U M B E R

R D T & E (X) P R O D () N00018-88-C-6083 00000000000000000

ACTUAL FORECAST (NON-CUMULATIVE)

ORGANIZAT IONAL A C T U A L END OF S I X M O N T H F O R E C A S T B Y M O N T H

OR FUNCTIONAL C U R R E N T C U R R E N T (E N T E R N A M E S O F M O N T H) (Enter Specified Periods)

C A T E G O R Y PERIOD P E R I O D AT

(C U M) M A R A P R M A Y JUN JUL AUG EOY87 CY88 1989-90 C O M P L E T I O N

100 H/W 31 3475 62 23 17 11 6 11 51 28 0 3684

200 S / W 241 7199 211 156 148 162 98 82 179 121 8 8364

300 ILS 36 719 20 15 12 12 12 11 59 160 48 1068

TOTAL DIRECT 308 11393 293 194 177 185 116 104 289 309 56 13116

ALL F IGURES IN WHOLE NUMBERS F O R M A T 4

 Section 9 – Labor Rate Analysis

9 - 5

9.2.3 RAW LABOR RATE DATABASE

NCCA collected cost and manning data for 34 software efforts. The software cost data was in
then-year dollars, including G&A, and the manning data is in man-hours or man-months. Table
9-1 lists all of the data points collected for the software labor rate analysis. These data points
met the initial criterion for database inclusion, which means they reported software cost. After
scrutiny of the data points, some programs, as shown in the shaded areas of Table 9-1, were
excluded from the database for one of the following reasons:

1) Man-hours were not reported.
2) Software development effort did not include the requirements phase.
3) Software development effort experienced major problems, (i.e., flight test failures).
4) Programs were less than 90 percent complete.

 Program Labor Hours Status of Completion
1 A-6E Upgrade not provided
2 AAAM not provided
3 AAAM Provided
4 AAAM Provided
5 AAAM (D&V) not provided
6 ALFS provided Less than 90 percent complete
7 AMRAAM AIM-120A not provided
8 AMRAAM SYS provided
9 AN/ALR-67 provided Less than 90 percent complete
10 AN/ALR-77 not provided
11 APG-71 F-14D provided
12 APG-73 RADAR provided
13 AQM-127A provided, s/w failure
14 ASPJ provided, effort < requirements
15 ASPJ provided, effort < requirements
16 BSY-1 provided Less than 90 percent complete
17 BSY-1 provided
18 BSY-1 provided
19 BSY-2 provided
20 CASS provided
21 CEC Provided
22 E-2C GRP2, PT2 not provided
23 ES-3A PROTOTYPE Provided
24 F-14A & F-14D Provided
25 F-18 FSD not provided
26 F/A-18 OTPS Provided Less than 90 percent complete
27 HARM-CLCP Provided
28 JSOW Provided
29 MHIP Provided
30 P-3UPD IV Provided Less than 90 percent complete
31 S-3A not provided
32 S-3B not provided
33 SMIP LOW not provided
34 SPAR/AIM/RIM-7P not provided

Table 9-1: NCCA Raw Software Labor Rate Database

 Section 9 – Labor Rate Analysis

9 - 6

9.2.4 NCCA NORMALIZED LABOR RATE DATABASE

The final sanitized,56 normalized software NCCA Labor Rate Database has 15 programs with 10
data fields as shown in Table 9-2. The man-hours expended to develop the software range
from 2K to 793K labor hours and the software costs through G&A range from $317K to $95M in
constant FY97$. The NCCA Normalized Labor Rate Database's population consists of aircraft,
ships, missiles and electronics programs, representing cost-plus and fixed-price contracts. The
East Coast contractors are located from Rhode Island to Florida. The West Coast contractors
are located from California to Texas. The first year of development ranged from 1982 to 1992.
NCCA did not collect MIS program data and all programs except one were embedded. Each
data field, shown in Table 9-2, is defined below.

 Contractor Contract DoD-Std Platform Labor Total
$/Hr

$/Hr %Expd/
Program Contractor Location Type 2167A KHrs Cost ($K) Compl

NCCA 1 1

West CPIF Post Missile 49.90 $4,709.62 $94.38 88.357
NCCA 2 2 East CPIF Post Missile 63.88 $7,170.56 $112.25 95.2
NCCA 3 3 West FPI Pre Missile 560.09 $45,164.53 $80.64 99.8
NCCA 4 3

3
West FFP Pre Aircraft 792.80 $86,637.84 $109.28 97.3

NCCA 5 3

West FFP Post Aircraft 314.22 $41,037.60 $130.60 100.0
NCCA 6 4 East CPIF Pre Ship 345.95 $25,235.64 $72.95 92.1
NCCA 7 5 West CPIF Pre Ship 207.75 $16,490.62 $79.38 98.5
NCCA 8 6 West FPI Post Ship 652.10 $57,282.64 $87.84 100.0
NCCA 9 7 East FFP Post Elex 138.00 $9,571.33 $69.36 99.7
NCCA 10 8 East CPAF/FF Post Ship 326.69 $26,067.94 $79.79 99.3
NCCA 11 9 East FPI Post Aircraft 2.41 $316.59 $131.64 100.0
NCCA 12 10 East FFP Pre Aircraft 723.99 $94,602.96 $130.67 91.9
NCCA 13 11 West FFP Post Missile 11.74 $911.64 $77.69 98.7
NCCA 14 11 West CPIF Post Missile 202.26 $17,902.27 $88.51 90.1
NCCA 15 3 West CPFF Post Missile 115.00 $10,372.80 $90.20 96.6

Table 9-2: NCCA Normalized Software Labor Rate Database FY97$K (Cost through G&A)

 1) Program: Records the program name for each software development. This
information is business sensitive and is withheld from the sanitized version of the NCCA
Raw Labor Rate Database. See Appendix F for this information.

 2) Contractor: Records the name of the contractor for identification purposes and for
development of contractor specific labor rate databases. This information is business
sensitive and is withheld from the sanitized version of the NCCA Raw Labor Rate
Database. See Appendix F for this information.

3) Contractor Location: Records the city and state of the facility for each program.

After all the locations were collected, NCCA categorized the states into two regions (east or
west). This information is business sensitive and is withheld from the sanitized version
of the NCCA Raw Labor Rate Database. See Appendix F for this information.

 4) Contract Type: Records the contract type for each software development effort. The
database includes cost-plus and fixed-price contract types.

56Due to the proprietary nature of the data, program name, developing contractor name and labor rate will not be published in
tandem. The key code to the data points is provided in Appendix F.
57NCCA made an exception to the 90 percent or more rule for this program because it had two prime contractors. One contractor
was slightly less than 90 percent expended, but the combined percent expended for both contractors was 92 percent.

 Section 9 – Labor Rate Analysis

9 - 7

 5) DoD-STD-2167A: Records the development standard. NCCA used the contract
number to determine the date of contract award. Based on this year, NCCA determined if the
development effort was prior to or after DoD-STD-2167A was implemented. Prior to 1985, other
standards were used to develop software.

 6) Platform: Records the platform type for each program (aircraft, missiles, ships or
electronics).

 7) Labor KHours: Records the total hours expended to develop software for the
program. The CCDR reports effort in hours and the CPR reports effort in man-months.

 8) Total Cost ($K): Records the cost at the total software level in thousands. The total
software cost level is the total amount of money expended for developing the program software.
The total software cost includes both direct and indirect costs. It does not include COM and
Fee/Profit; these burden rates are included in the price level analysis.

 9) $/Hr: Total dollars expended divided by total labor hours for the program’s software
effort.

 10) %Expd/Compl: Calculates the percent complete. This equates to the actual
software cost spent to date on a CCDR divided by the total software cost at completion. For
CPRs, NCCA calculated the percent complete by dividing the software actual cost of work
performed (ACWP) by the software LRE.

9.3 METHODOLOGY AND RESULTS

There are several approaches that can be used to convert software effort to software cost. The
preferred approach, if the contractor is known, is to utilize the Forward Pricing Rate Agreements
(FPRAs). These rates are the actual Defense Contracting Audit Agency (DCAA) approved or
recommended rates for the contractor; they best represent current and future business base
conditions. However, to apply these rates correctly, not only does the analyst require a
proposed or representative historical software team composition, but the analyst also should be
aware of how the historical team composition compares with the proposed team composition for
the program being estimated. Appendix F provides a detailed example and further direction on
the correct application of FPRAs. If the FPRAs are not available, NCCA recommends the
analyst try to develop a contractor-specific labor rate database based on the most analogous
data available. Appendix F provides detailed procedures for the application of a contractor-
specific labor rate. Both approaches focus on retrieving the most analogous historical data
available to estimate the software cost. However, if the analyst has been unsuccessful in
performing either approach, NCCA recommends the analyst utilize the software team’s effort-to-
cost conversion tool discussed in this section.

In the process of developing an effort-to-cost conversion tool, NCCA computed average labor
rates, performed nonparametric analyses using the Wilcoxon Two-Sample test and ran both
linear and power regressions. Technical information such as sizing, code condition and
language was not provided; therefore, the productivity drivers identified in Section 4 - Effort
Analysis: Significant Drivers could not be used to partition the database. The other
characteristics (contract type, platform type, contractor location, number of labor hours and

 Section 9 – Labor Rate Analysis

9 - 8

software development standard) were provided for each program and were investigated as
database partitions using the non-parametric Wilcoxon Two-Sample test. These characteristics
were examined as database partitions for the following reasons:

Contract Type

NCCA attempted to capture the different rate structures due to the inherent risks of different
contract types. A fixed price contract places full assumption of risk, cost, and profit or loss on
the contractor. A cost plus contract is a total cost reimbursement contract where the
government is required to reimburse the contractor for all reasonable and allocable costs
incurred during contract performance. There were seven cost plus data points and eight fixed
price data points.

Platform Type

NCCA attempted to capture the difference between platforms; air systems have greater physical
constraints than non-air systems. The database consisted of software development efforts for
aircraft avionics, missiles, shipboard electronics and ground electronics programs. There were
four aircraft related data points and eleven non-aircraft (missiles, ships, electronic) data points.

Contractor Location

NCCA divided the database to investigate possible geographical (i.e., east versus west)
differences in rate structures due to varying cost of living levels. The database included nine
contractors in the west (California, Texas, Arizona) and six contractors on the East Coast
(Rhode Island, Maryland, Virginia, Florida, New Jersey).

Number of Labor Hours

Graphically, it appeared that there were two separate data sets and the database breakpoint
was at a size of 200K. Six data points had less than 200K labor hours and nine data points had
more than 200K labor hours.

Software Development Regulation

In the database, the years of software development range from 1982 through 1992. During this
ten year span, there were different DoD standards used for different programs. After 1985,
DoD-STD-2167A was the standard for developing software. Prior to 1985, there were several
DoD standards utilized for software development. Each standard had different requirements for
documenting the process, controlling the process, presenting the process, and conducting
reviews of the process. Five programs in the database were developed prior to DoD-STD-
2167A and ten programs were developed after DoD-STD-2167A became effective.

9.3.1 AVERAGE LABOR RATE ANALYSIS

Average labor rates were developed for the database partitions described above. NCCA
calculated the labor rates by dividing software dollars by software labor hours.

 Section 9 – Labor Rate Analysis

9 - 9

Table 9-3 summarizes the results and statistics from the average rate analysis. The back-up
spreadsheets for the average rate analysis are provided in Appendix F.

Population

Avg Rate/Hr
(FY97$)

SEE58

CVest

59
Average Rate One Total (Top-Level) $95.68 9167.90 31%

Average Rate Two (Contract Type) Cost Plus $88.21 7995.93 27%

 Fixed Price $102.21

Average Rate Three (Platform) Aircraft $125.55 4128.69 14%

 Non-Aircraft $84.82

Average Rate Four (Location) East $99.44 8603.82 29%

 West $93.17

Average Rate Five (Size) <200K Hours $95.92 9191.90 31%

 >200K Hours $95.52

Average Rate Six (Standard) Pre DoD-STD-2167A $94.58 9358.48 32%

 Post DoD-STD-2167A $96.23
Table 9-3: Average Labor Rate Analysis (Cost through G&A)

To complete the average labor rate analysis, the Wilcoxon Two-Sample test was performed for
each population to determine if the population means were statistically different, where Ho, the
null hypotheses, assumes that the population means are equal. Table 9-4 presents the final
results from each test (see Appendix F). Based on the results from the Wilcoxon Two-Sample
test (see Appendix C), NCCA concluded that platform type was the only significant driver among
the five variables examined. Since the means were proven to be statistically different, an
aircraft software development estimate should use an aircraft specific average labor rate, while
ship, missile, and electronic software development estimates should use the non-aircraft
average labor rate. Since platform type was the only significant driver, it was the only dummy
variable used in the follow-on regression analyses.

 Population Reject Ho

Test One Cost Plus vs. Fixed Price No
Test Two Aircraft vs. Non-Aircraft Yes
Test Three East Coast vs. West Coast No
Test Four Labor Hours < 200K vs. Labor Hours > 200K No
Test Five Pre-DoD-STD-2167A vs. Post-DoD-STD-2167A No

Table 9-4: Nonparametric Analysis

9.3.2 REGRESSION ANALYSIS

In an attempt to improve the statistics of the average labor rates shown above, NCCA
performed linear and power regression analyses. Software cost through G&A (FY97$K) was
the dependent variable. Thousands of labor hours and the platform dummy variable, or dummy
slope, were the independent variables. For both sets of analyses (linear and power), the
methodology for regression analyses sets one ($ = f(labor hours) and two ($ = f(labor hours and
platform type) was the same. The final spreadsheets for each analysis are provided in
Appendix F and the analyses and results are detailed below.

58 SEE is the standard error of the estimate is a measure of the deviation of the sample data points from the regression line.

59 CVest =
Y

SEE dataset , where Y = $29,564.97.

 Section 9 – Labor Rate Analysis

9 - 10

9.3.2.1 REGRESSION ANALYSIS SET ONE

NCCA regressed software dollars as a function of labor hours. This analysis provided both
linear and power regressions, equations [9-1] and [9-2], for estimating the development cost of
software. The Labor Khrs variable was significant at the 95 percent confidence level.

FY97$K = -3,045.36 + 108.54 * (Labor Khrs)
R2 = 0.93; CV = 0.28; Predict (20) = 33%; Range 2.41 - 792.80 Labor Khours60

FY97$K = 103.26 * (Labor Khrs)0.98

R2 = 0.98; CV = 0.22; Predict (20) = 60%; Range 2.41 - 792.80 Labor Khours

9.3.2.2 REGRESSION ANALYSIS SET TWO

NCCA regressed software dollars as a function of labor hours and the dummy intercept variable,
platform type (equations [9-3] - linear and [9-5] - power). Platform type was also used as a
dummy slope variable (equations [9-4] - linear and [9-6] - power). The dummy slope variable
assumes that the slopes of the two regression lines are different, but that the intercept terms are
identical. Platform type was significant at the 95 percent confidence level.

Equation [9-3] is the linear equation, using the dummy intercept.

FY97$K = 10,055.89 + 99.47 * (Labor Khrs) - 14,150.64 * D1

R2 = 0.97; CV = 0.20; Predict (20) = 60%; Range 2.41 - 792.80 Labor Khours 61
where D1 = 0 for aircraft and 1 for non-aircraft

Equation [9-4] is the linear equation, using the dummy slope.

FY97$K = 374.32 + 119.37 * (Labor Khrs) - 37.45 * [D1 * Labor Khrs]
R2 = 0.99; CV = 0.13; Predict (20) = 73%; Range 2.41 - 792.80 Labor Khours

where D1 = 0 for aircraft and 1 for non-aircraft

Equation [9-5] is the power equation, using the dummy intercept.

 FY97$K = 136.98 * (Labor Khrs)0.98 * e(D1 * -0.40)
R2 = 0.99; CV = 0.13; Predict (20) = 87%; Range 2.41 - 792.80 Labor Khours

 where D1 = 0 for aircraft and 1 for non-aircraft

Equation [9-6] is the power equation, using the dummy slope.

FY97$K = 95.91 * (Labor Khrs)1.02 – (D1 * -.0006)

R2 = 0.99; CV = 0.20; Predict (20) = 47%; Range 2.41 - 792.80 Labor Khours
where D1 = 0 for aircraft and 1 for non-aircraft

60 Labor hours less than 28K will result in a negative cost.
61 Non-aircraft programs with labor hours less than 41K will result in a negative cost.

[9-2]

[9-3]

[9-5]

[9-4]

[9-6]

[9-1]

 Section 9 – Labor Rate Analysis

9 - 11

9.4 RECOMMENDATIONS

Although all six equations developed in Section 9.3.2 were significant, only equations [9-3]
through [9-6] capture the impact of the significant driver: platform type. Of these, equations [9-
4] and [9-5] had the lowest CVs (13 percent). NCCA then compared equation [9-5] (power form
of the equation) to equation [9-4] (the linear form of the equation) to determine how well the
power equation performed. Equation [9-5] resulted in smaller residuals than equation [9-4] on
small programs; but a majority of the time, the estimates for both equations were within two
percent of one another. Equation [9-5] had a Predict (20) of 87 percent in comparison to
equation [9-4]’s Predict (20) of 73 percent. A detailed review of the resulting residuals indicated
no other trends or biases in the data (i.e., no overestimating or underestimating of large vice
small programs, or aircraft vice non-aircraft). For these reasons, equation [9-5] is the
recommended regression.

Equation [9-5] was then compared to the average labor rates. For purposes of comparison, the
lower level average labor rate (set of factors developed in section 9.3.1) which captures the
platform impact is shown below:

Aircraft = $125.55/Hour; Non-Aircraft = $84.82/Hour
CVest = 0.14; Predict (20) = 87.00%

These two methodologies are essentially identical, however, the CVest of the average labor rate
was 14 percent, as shown above. Equation [9-5] has a lower CV (13 percent). However, it
should be noted that equation [9-5] has an exponent of 0.98 which indicates a small economy of
scale (i.e., it is more cost effective to develop large programs than small programs). This
implies that there is a fixed level of cost (possibly captured in overhead) associated with all
programs and that, as the hours increased, this cost is allocated across a larger base; hence
cost per hour is lower for a larger program. However, because an exponent close to one
implies that the relationship is almost linear, the economies of scale are actually quite minute.
Therefore, based on the lower CV value, NCCA recommends utilizing the platform specific
(aircraft or non-aircraft) equation provided below when analogous or contractor specific data is
not available:

FY97$K = 136.98 * (Labor Khrs)0.98 * e(D1 * -0.40)
R2 = 0.99; CV = 0.13; Predict (20) = 87%; Range 2.41 - 792.80 Labor Khours

 where D1 = 0 for aircraft and 1 for non-aircraft

Cost of Money (COM) and fee were not available for all data points in the NCCA Normalized
Labor Rate Database; therefore, NCCA used what was available to develop average burden
rates. Although they were based on a small population, the resulting burden rates were
comparable to those experienced, in general, by other EMD programs. Appendix F contains the
resulting average burden rates. These rates were applied to the estimated software cost
estimate to arrive at a software price regression. Programs NCCA 4 and NCCA 15 provided
cost through G&A. Typically COM is applied to cost less G&A, versus COM being applied to
cost through G&A, but in order to remain consistent, NCCA calculated and then applied an
average COM rate, 2.1 percent to cost through G&A. The average COM rate was based on six
programs from the NCCA Normalized Labor Rate Database. An average fee, 10.9 percent,
calculated based on three programs that provided fee separately, was then applied to cost

[9-5]

 Section 9 – Labor Rate Analysis

9 - 12

through G&A and COM. The following regression was developed to estimate the price of
software through G&A, COM and fee:

FY97$K = 154.21 * (Labor Khrs)0.98 * e(D1 * -0.39)

R2 = 0.99; CV = 0.13; Predict (20) = 87%; Range 2.41 - 792.80 Labor Khours
 where D1 = 0 for aircraft and 1 for non-aircraft

NCCA’s recommended process for converting effort-to-cost is shown in Figure 9-5.

Step 1: Determine if there is additional data (analogous or contractor). If so, then normalize
the data and develop analogous or contractor specific cost estimating tools.

Step 2: If no data exists, then use NCCA’s effort-to-cost conversion regression (aircraft and
non-aircraft), provided above.

Figure 9-5: Recommended Labor Rate Estimation Process

[9-5a]

Additional
Data?

Convert Effort to
Cost using the
Standard Labor

Rate

No

Yes

STOP

Contractor
Specific Data?

Yes

No Normalize Data and
Add to the NCCA

Labor Rate
Database

 Develop CERs and
Average Factors

Convert Effort to
Cost Convert Effort

to Cost

Normalize Data and
Develop a Contractor
Specific Labor Rate

 Section 9 – Labor Rate Analysis

9 - 13

9.5 CONCLUSIONS

With the exception of conducting risk analysis, converting effort-to-cost is the final step towards
developing a software cost estimate. Through this analysis, NCCA was able to identify platform
type as a variable that affects the cost of software development. This variable was the only
significant variable statistically proven to affect software development cost. Even with the
exceptional statistics and robust underlying data set (i.e., size, range, platform type, contract
type, etc.), this analysis could be enhanced with the collection of more data; especially data that
reflects current practices and technologies.

9.6 ADDITIONAL CONSIDERATIONS

There are two other issues the analyst should consider when utilizing the NCCA Raw Labor
Rate Database or historical data from other sources. These issues are: 1) drastic overhead
rate changes due to company location or business base changes and 2) acquisition strategy
changes.

If a company relocates, the relocation can affect the labor hours expended (both indirect and
direct costs). If a company has already relocated, NCCA recommends obtaining the projected
change in rates from the Administrative Contracting Officer (ACO). Additionally, different
divisions within a company may have significantly different productivities and rates due to
different business practices and/or accounting structures. If a company consolidates with other
divisions or companies, drastic changes in rate structures may occur.

Acquisition strategy also affects the labor cost. An analyst may see exceptionally low direct
labor and overhead rates if the contractor is using software vendor houses vice developing
software in-house. The NCCA analyst needs to know who is developing the software and
where, and also, how this compares with the way business was previously conducted.

If the analyst determines, that a contractor’s proposed labor rate is relatively low in comparison
to historical labor rates for that contractor or NCCA’s average labor rates, the analyst should
investigate whether or not there have been any changes to the company’s rate structure. If
there have been changes, determine the underlying cause of these changes. If the contractor
does not provide valid reasons for the changes, the analyst should use NCCA’s recommended
approach.

9.7 FUTURE EFFORTS

In the future, to improve the effort-to-cost conversion tool, NCCA recommends the following
efforts be performed:

1) Collect data for additional embedded programs to enlarge the NCCA Normalized Labor Rate

Database.

2) Collect data for MIS programs to widen the software application range of the NCCA

Normalized Labor Rate Database.

 Section 9 – Labor Rate Analysis

9 - 14

3) Collect SLOC and cost per reporting period for each program in order to evaluate the
relationship between SLOC growth (an indication of problems in the development process)
and the associated software cost. This data will also allow us to track the average man-year
rate and software team composition over the software development process. Appendix F
provides more details.

4) Collect both CCDRs and CPRs for programs to investigate the differences between percent

expended and percent complete.

5) Track the software development effort and associated man-year rates for specific

contractors. Collecting effort data in conjunction with the associated man-year rates would
provide insight into the specific skill level that is required to achieve a certain productivity
level. For example, this would allow the analyst to obtain the associated man-year rate of z1
for program X which experienced a productivity of seven SLOC per day versus program Y
which experienced four SLOC per day with an associated man-year rate of z2.

6) Collect the phases associated with the hours expended developing the software.

7) Collect the actual hours expended per man-month for data collected via CPRs which report

total man-months expended for software development.

RISK ANALYSIS

10.1 INTRODUCTION

Since software size is typically one of the primary inputs for developing a software cost
estimate, the accuracy of the cost estimate is highly dependent on the quality of the size
estimate. However, size is difficult to estimate early in the acquisition cycle when the system
design and requirements are not clearly defined. Verner and Tate [20] cited several studies that
pursued the “elusive goal” of accurate size estimation, and Conte [21] stated that “expert sizing
depends on so many subjective factors that different ‘experts’ often arrive at radically different
estimates.”

Historically, SLOC size estimates have been optimistically low with respect to total code count
and optimistically high with respect to reused code count. This section of the handbook
addresses NCCA’s approach to quantifying the risk associated with optimistic size and reuse
assumptions.

The following areas of discussion describe NCCA’s development of a risk analysis
methodology:

• NCCA Risk Analysis Databases
• SLOC Growth Methodology, Results and Conclusions
• Code Condition Change Methodology, Results and Conclusions
• Overall Recommended Approach
• Future Efforts

10.2 NCCA RISK ANALYSIS DATABASES

NCCA also created a separate SLOC growth risk database to support the development of
software risk analyses. The detailed methodology will be discussed below.

10.2.1 GROUND RULES AND ASSUMPTIONS

Listed below are the ground rules and assumptions for this analysis:

1) NCCA assumed that the program-level sample data was derived from a normally-distributed

population. This means that calculating the mean, median, and mode statistics is simple,
and the procedure is well documented. Additionally, the results of statistical tests, such as
the t-test, are valid for making decisions about different samples.

2) All program-level SLOC represented logical lines of code.

10

 Section 10 – Risk Analysis

10 - 2

10.2.2 RAW RISK ANALYSIS DATABASE

NCCA extracted the majority of the data from the SMC Database [7] and the remaining data
from internal NCCA files and a study by Om and Bui [22] at IDA.

NCCA performed a query of the SMC Database to obtain data points that included both actual
and estimated SLOC measured using the logical code counting convention. The query
produced 12 program-level and 28 CSCI-level data points. Next, a search of NCCA’s files
provided 11 additional program-level data points. Finally, one program-level and four CSCI-
level data points were collected from the IDA study for a total of 23 program-level and 32 CSCI-
level data points. See Appendix G for the list of data points, including associated data
elements.

10.2.3 NCCA NORMALIZED RISK ANALYSIS DATABASE

A number of data points in the raw database were eliminated. Specifically, three of the 23
program-level data points were MIS programs which were excluded to remain consistent with
the effort, schedule and labor rate analyses. All 32 of the CSCI-level data points were excluded
based on the results of the Mann Whitney U test and the Kolmogorov-Smirnov test (see
Appendix C for more details), which showed that the means and variances were not equal to the
program-level data points. In addition to these deletions, four program-level data points that did
not have verifiable SLOC estimates were also eliminated. Finally, the Kolmogorov-Smirnov test
was conducted to determine whether the one Assembly program should be deleted. It was
determined that the one Assembly data point was not statistically different then the other 15
HOL data points. As a result, the normalized SLOC Growth Database includes 16 program-
level data points.

Although the programs were developed between Milestones II and III, specific review dates
were unknown. The majority of the program names are also unknown. The range of estimated
SLOC values is 14 to 1,246 KSLOC; nine programs are less than 100 KSLOC. Five programs
are entirely new. All the data is for weapon system programs where the condition of the code,
both new and reused, was known. See Appendix G for a detailed list of these data points with
associated data elements.

The program-level data was partitioned in several ways: 1) language (Fortran, Ada, Jovial,
Atlas, CMS-2, C or C++, Assembly, and other); 2) development method (waterfall, incremental,
and spiral); 3) mission assigned (Command and Control (C2)), testing, software tools, signal
processing, and mission plans); and 4) complexity (simple, routine, difficult and complex).
Information on the development method and complexity were only available for the SMC data
points. All variables cited above were objective measures except complexity level which was a
subjective measure of requirements definition complexity:

1) Simple - Existing product line in an existing environment.
2) Routine - New product line in an existing environment.
3) Difficult - New product line in a new environment.
4) Complex - Pushing state-of-the-art.

 Section 10 – Risk Analysis

10 - 3

10.3 SLOC GROWTH METHODOLOGY, RESULTS AND
CONCLUSIONS

Three different SLOC growth estimating approaches were developed. Each approach has two
sections: 1) Methodology and Results and 2) Conclusions.

10.3.1 APPROACH ONE

10.3.1.1 APPROACH ONE METHODOLOGY AND RESULTS

The first approach established top-level standard growth factors by calculating the mean,
median, and range mode of the percent total growth, where:

%Total Growth =
()

100*
SLOCEstimated

SLOCEstimatedSLOCActual −

The median and range mode statistics indicated the “most likely” percent growth. The standard
factor, when applied as shown below, provides a revised SLOC estimate. (See examples on
pages 10-16 through 10-19.)

 Revised SLOC = (%Total Growth * Initial SLOC Estimate) + Initial SLOC Estimate

The mean, SEE, and CVest were calculated for the percent total growth. See Table 10-1. The
Predict (20) was also calculated for each metric. (See Appendix C for a more complete
explanation of CVest and Predict (20).)

As shown in Table 10-1, the mean percent total growth for the 16 programs was 63 percent or
59 KSLOC. The average actual size of a program was 274 KSLOC, and the Predict (20) was
25 percent; that is, four of the 16 estimated values were within 20 percent of their actual percent
growth. The CVest for the mean was 82 percent; the mean overestimated 69 percent of the
programs possibly due to four large-growth data points (#18, #327, #2461, and NCCA-1). Thus,
it was not a good predictor of total growth.

Since the mean overestimated a disproportionate amount of the time, NCCA performed a
tradeoff analysis of the data to determine whether program size influenced the percentage of
growth experienced. This tradeoff analysis (similar to the one discussed previously for Efactors
in Section 5 - Effort Analysis: Normalized Regressions) determined the point where the
lowest CV occurred. This “optimal” point was 100 KSLOC with nine programs less than 100
KSLOC and seven programs greater than 100 KSLOC. However, the associated t-statistic for
this variable was not significant at the 95 percentile. Furthermore, when these samples were
compared using the Mann-Whitney U test, the results demonstrated that the means of the two
samples were equal (see Appendix G for the data and non-parametric results); hence, no
further analysis of the separate samples was done.

 Section 10 – Risk Analysis

10 - 4

A B C D

Record # Mission Est Tot Act Tot Total Growth %Tot Growth Y(est) e(i) %e(i)

(B - A) (B/A) - 1 (0.6326 x A) + A (C - B) (D/B)

8 C2 618000 709000 91000 14.72 621909.31 -87090.69 -12.28%

15/16/17 C2 23599 25814 2215 9.39 23748.28 -2065.72 -8.00%

18 C2 14000 70143 56143 401.02 14088.56 -56054.44 -79.91%

23/24/26/27 Testing 41800 46303 4503 10.77 42064.42 -4238.58 -9.15%

308 S/W Tools 45000 45000 0 0.00 45284.66 284.66 0.63%

327 C2 39294 119400 80106 203.86 39542.56 -79857.44 -66.88%

2459 C2 22000 30000 8000 36.36 22139.17 -7860.83 -26.20%

2461 Signal Proc 15500 26513 11013 71.05 15598.05 -10914.95 -41.17%

2613 C2 100000 122000 22000 22.00 100632.57 -21367.43 -17.51%

2616 Mission Plans 532000 877129 345129 64.87 535365.30 -341763.70 -38.96%

NCCA-1 C2 206650 394309 187659 90.81 207957.22 -186351.78 -47.26%

NCCA-2 C2 74000 82930 8930 12.07 74468.11 -8461.89 -10.20%

NCCA-3 C2 213800 261800 48000 22.45 215152.44 -46647.56 -17.82%

NCCA-4 C2 153000 185000 32000 20.92 153967.84 -31032.16 -16.77%

NCCA-5 C2 83900 108850 24950 29.74 84430.73 -24419.27 -22.43%

NCCA-6 C2 1246272 1272200 25928 2.08 1254155.60 -18044.40 -1.42%

N = 16 Mean = 273524 59224 63.26% SEE = 111299

CVest = 0.41

Predict (20) = 25%
Table 10-1: Mean Percent SLOC Growth Analysis

To minimize the impact of the large-growth data points, NCCA developed an alternative growth
factor based on the median (vice mean) of the NCCA Normalized SLOC Growth Database. The
median percent total growth was 22 percent or 35 KSLOC. By definition, the median splits the
data into two equal parts; hence, the median percent total growth neither overestimated nor
under-estimated a disproportionate amount of the time, and the CVest decreased substantially.
The CVest when applying the median was 37 percent and the Predict (20) was 62.5 percent.
Therefore, even though a program experienced a very small or very large amount of growth, the
median was within 20 percent of the actual values 63 percent of the time. Hence, it performed
better than the mean (see Table 10-2).

In addition to evaluating the mean- and median-based growth factors, the range mode was
considered. The range mode percent total growth was 20 to 30 percent. This metric provided a
range estimate rather than a single point estimate.

10.3.1.2 APPROACH ONE CONCLUSIONS

The advantages of these top level factors are: 1) the mean and median percent total growth are
simple to calculate and apply; 2) the median percent total growth is relatively insensitive to
extreme values; and 3) the median percent total growth factor falls within the range mode and
therefore is assumed to be more accurate than the mean.

 Section 10 – Risk Analysis

10 - 5

A B C D
Record # Mission Est Tot Act Tot Total Growth %Tot Growth Y(est) e(i) %e(i)

(B - A) (B/A) - 1 (0.2225 x A) + A (C - B) (D/B)
308 S/W Tools 45000 45000 0 0.00 55012.50 10012.50 22.25%

NCCA-6 C2 1246272 1272200 25928 2.08 1523567.52 251367.52 19.76%
15/16/17 C2 23599 25814 2215 9.39 28849.78 3035.78 11.76%

23/24/26/27 Testing 41800 46303 4503 10.77 51100.50 4797.50 10.36%
NCCA-2 C2 74000 82930 8930 12.07 90465.00 7535.00 9.09%

8 C2 618000 709000 91000 14.72 755505.00 46505.00 6.56%
NCCA-4 C2 153000 185000 32000 20.92 187042.50 2042.50 1.10%

2613 C2 100000 122000 22000 22.00 122250.00 250.00 0.20%
NCCA-3 C2 213800 261800 48000 22.45 261370.50 -429.50 -0.16%

NCCA-5 C2 83900 108850 24950 29.74 102567.75 -6282.25 -5.77%
2459 C2 22000 30000 8000 36.36 26895.00 -3105.00 -10.35%
2616 Mission Plans 532000 877129 345129 64.87 650370.00 -226759.00 -25.85%
2461 Signal Proc 15500 26513 11013 71.05 18948.75 -7564.25 -28.53%

NCCA-1 C2 206650 394309 187659 90.81 252629.63 -141679.38 -35.93%
327 C2 39294 119400 80106 203.86 48036.92 -71363.09 -59.77%

18 C2 14000 70143 56143 401.02 17115.00 -53028.00 -75.60%

N = 16 Mean = 273524 Median = 22.25% SEE = 101786

CVest = 0.37

Predict (20) = 62.50%
Table 10-2: Median Percent SLOC Growth Analysis

Generally, the disadvantages of this approach are: 1) the mean is much more sensitive to
extreme values (as demonstrated by the large CVest and small Predict (20); 2) the median
ignores the relative size of the apparent growth, treating all data points greater than or less than
the median point equally (i.e., all the data points with greater than 22 percent growth are treated
identically); and 3) a point regression may not provide an accurate “most likely” estimate.

10.3.2 APPROACH TWO

10.3.2.1 APPROACH TWO METHODOLOGY AND RESULTS

The second approach used regression analysis to develop relationships of the form:

Actual SLOC = f(Estimated SLOC)
Percent Growth = f(Estimated SLOC)

These regressions were developed with and without dummy variables, such as: size, language,
development method, complexity, mission, and percent actual new code. See Appendix C for
an explanation of dummy variables.

The validity and significance of the resulting regression equations were evaluated using a
variety of statistical tests and measures such as the F- and t-tests, Mann-Whitney U test,
Kolmogorov-Smirnov test, CV, R2 values, SEE, and residual analysis.

 Section 10 – Risk Analysis

10 - 6

Table 10-3 displays representative regression equations and their statistics:

Y(est) = X1(coeff) X1 + X2(coeff) X2 + Constant R2 CVest Std ERR Predict (20) t1(value) t1(sig) t2(value) t2(sig) N df F(value) F(sig)

Act Tot = 1.0816 Est Tot + + 41743 0.95 0.33 88901.92 31% 15.506 100% 16 14 240.44 100%

ln(Act Tot) = 0.00000315 Est Tot + + 11.0942 0.68 0.74 0.7368 13% 5.4426 100% 16 14 29.62 100%

ln(Act Tot) = 0.8769 ln(Est
Tot)

+ + 1.7791 0.90 0.42 0.4163 44% 11.0725 100% 16 14 122.60 100%

%Tot Growth = -7.51876E-07 Est Tot + + 0.7937 0.06 1.64 1.0381 6% -0.9231 63% 16 14 0.85 63%

ln(%Tot
Growth)

= -0.0000021 Est Tot + + -0.6690 0.29 1.14 1.1351 6% -2.41 97% 16 14 5.81 97%

ln(%Tot
Growth)

= -0.4727 ln(Est
Tot)

+ + 4.2560 0.24 1.18 1.1756 31% -2.114 95% 16 14 4.47 95%

Act Tot = 0.959 Est Tot + 118245.74 Size >
100K

+ 23668.443 0.96 0.29 79722.18 38% 11.2093 100% 2.0999 94% 16 13 151.70 100%

Act Tot = 0.9981 Est Tot - 86381.26 Size <
100K

+ 108219.09 0.95 0.31 84391.81 25% 11.8198 100% -1.5926 86% 16 13 134.68 100%

Act Tot = 1.0756 Est Tot - 31360.48 Ada + 48893.809 0.95 0.33 91277.09 38% 14.8398 100% -0.53 39% 16 13 114.18 100%

Act Tot = 1.0881 Est Tot - 47798.32 C2 + 76186.421 0.95 0.33 89384.89 38% 15.4364 100% -0.9215 63% 16 13 119.35 100%

Act Tot = 1.3715 Est Tot - 80761.80 Routine + 32333.65 0.95 0.34 69891 20% 13.11 100% -1.63 85% 10 7 86.90 100%

Act Tot = 1.3504 Est Tot - 72690.60 Waterfall + 40243.39 0.95 0.34 70347 30% 13.10 100% -1.59 84% 10 7 85.80 100%

Table 10-3: Summary of Approach Two - Size Growth Estimating Relationships

The R2 values demonstrate that this approach produced valid regressions for estimating actual
total SLOC (the first three equations in Table 10-3 above), but not for estimating percent growth
(the middle three equations). Appendix G contains the regression analyses for the significant
regressions (first six equations above). Since none of the dummy variables attempted in
equations six through 12 (the last six equations) were significant at the 95 percent confidence
level, they were eliminated from further consideration. Of the first six equations, the growth
estimating relationship with the lowest CV and best associated statistics follows:

Actual Total SLOC = 41743 + (1.0816 * Estimated Total SLOC)
 R2 = 0.95; CVest = 0.33; Predict (20) = 31%; Range = 14 - 1,246 KSLOC

However, as shown by the residuals in Table 10-4, the equation severely overestimated most of
the smaller programs.

10.3.2.2 APPROACH TWO CONCLUSIONS

The use of regression analysis indicates that there is a strong relationship between actual total
SLOC and estimated total SLOC. The advantage to Approach Two is that a statistical model
explains the systematic behavior of the data while leaving out random components.

The disadvantages to Approach Two are: 1) the influence of an excessively large program (e.g.
NCCA-6) with a small growth percentage on the slope of the regression line (i.e.,
disproportionate amounts of over- or underestimating); and 2) the similar effect of an
excessively small program (like #18) with a large growth percentage on the slope of the
regression line.

[10-1]

 Section 10 – Risk Analysis

10 - 7

A B C

Record # Mission Est Tot Act Tot Y(est) e(i) %e(i)

(B - A) (C/A)

15/16/17 C2 23599 25814 67267.16 41453.16 160.58%

2461 Signal Proc 15500 26513 58507.53 31994.53 120.67%

2459 C2 22000 30000 65537.73 35537.73 118.46%

308 S/W Tools 45000 45000 90413.81 45413.81 100.92%

23/24/26/27 Testing 41800 46303 86952.79 40649.79 87.79%

18 C2 14000 70143 56885.18 -13257.82 -18.90%

NCCA-2 C2 74000 82930 121779.31 38849.31 46.85%

NCCA-5 C2 83900 108850 132486.84 23636.84 21.72%

327 C2 39294 119400 84242.38 -35157.62 -29.45%

2613 C2 100000 122000 149900.10 27900.10 22.87%

NCCA-4 C2 153000 185000 207223.25 22223.25 12.01%

NCCA-3 C2 213800 261800 272982.64 11182.64 4.27%

NCCA-1 C2 206650 394309 265249.42 -129059.58 -32.73%

8 C2 618000 709000 710152.78 1152.78 0.16%

2616 Mission Plans 532000 877129 617137.86 -259991.14 -29.64%

NCCA-6 C2 1246272 1272200 1389672.23 117472.23 9.23%
Table 10-4: Residuals of Actual Total SLOC versus Estimated Total SLOC

10.3.3 APPROACH THREE

10.3.3.1 APPROACH THREE METHODOLOGY AND RESULTS

The third approach was a two-step analysis based on the hypothesis that size growth is
inversely proportional to the extent of code reused (i.e., greater reuse means less growth and
vice versa).

The first step was to determine the program’s percentage of reused SLOC. This was
accomplished by estimating percent actual new SLOC (1 - percent actual reused SLOC) based
on percent estimated new SLOC, since percent actual new SLOC (or percent actual reused
SLOC) is unknown when a program initially starts. The form of the regression is as follows:

%Actual New SLOC = a + (b * %Estimated New SLOC)

The second step was to estimate the actual SLOC based on the estimated SLOC and a dummy
variable which accounts for the percentage of reused SLOC (1 - percent estimated new SLOC)
in the program. The dummy variable (percent actual new SLOC) was based on the estimating
methodology described in the first step. Below is the linear equation for the second step:

Actual SLOC = a + (b * Estimated SLOC) + (c * %Actual New SLOC (estimated))

 Section 10 – Risk Analysis

10 - 8

Table 10-5 below shows the percent actual and estimated new SLOC and percent actual and
estimated reused SLOC that were used in performing the regression analysis. Only 11 of the
16 data points were included, since five were entirely new programs.

Record # Mission %New Est %New Act %Reuse Est %Reuse Act

15/16/17 C2 11.71 19.56 88.29 80.44
23/24/26/27 Testing 88.28 100.00 11.72 0.00

308 S/W Tools 44.44 55.56 55.56 44.44

327 C2 75.14 100.00 24.86 0.00
2461 Signal Proc 95.48 96.38 4.52 3.62

2613 C2 90.00 98.36 10.00 1.64
2616Mission Plans 24.81 61.24 75.19 38.76

NCCA-2 C2 25.68 33.68 74.32 66.32
NCCA-3 C2 89.50 80.42 10.50 19.58

NCCA-4 C2 42.48 86.49 57.52 13.51
NCCA-6 C2 41.49 40.84 58.51 59.16

N = 11 Mean = 57.18 70.23 42.82 29.77
Table 10-5: Programs with Reuse

Table 10-6 shows the results of all three forms of the regression equation (see Appendix G).
The R2 values demonstrated that this approach produced adequate regressions for percent
actual new SLOC for the linear and power forms of the regressions.

Y(est) = X1(coeff) X1 + Constant R2 CVest Std ERR Predict (20) t(value) t(sig) N df F(value) F(sig)

%Act New = 0.8189 %Est New + 0.234 0.7426 0.22 0.1575 45% 5.0957 99.94% 11 9 25.9665 100%

ln(%Act New) = 1.4469 %Est New + -1.2919 0.6863 0.3196 0.3196 55% 4.4376 99.84% 11 9 19.6919 100%

ln(%Act New) = 0.7057 ln(%Est New) + 0.0563 0.7965 0.2575 0.2575 55% 5.9347 99.90% 11 9 35.2207 100%

Table 10-6: Approach Three Size Growth Estimating Relationships

The best regression equation and its associated statistics follow:

%Actual New SLOC = 0.234 + (0.8189 * %Estimated New SLOC)
 R2 = 0.74; CV = 0.22; Predict (20) = 45%; Range = 16 – 1,246 KSLOC

Although NCCA was able to develop a statistically significant percent new SLOC regression,
this approach was abandoned because percent actual new was insignificant (i. e., percent
reused SLOC did not drive SLOC growth) as a dummy variable (see t2(sig) in Table 10-7). The
following equation represents the form of the regression:

Actual SLOC = a + (b * Estimated SLOC) + (c * %Actual New SLOC)
b = x1(coefficient); c = x2(coefficient)

Table 10-7 lists representative regressions and their statistics (see Appendix G):

[10-2]

 Section 10 – Risk Analysis

10 - 9

Y(est) = X1(coeff) X1 + X2(coeff) X2 + Constant R2 CV Std ERR Predict (20) t1(value) t1(sig) t2(value) t2(sig) N df F(value) F(sig)

Act Tot = 1.0878 Est Tot + 37609.89 %Act New + 6462.427 0.9462 0.38 106225 27% 11.3081 100.00% 0.3117 23.67% 11 8 70.3836 100%

ln(Act Tot) = 3.18E-06 Est Tot + 0.9134 %Act New + 10.3568 0.733 0.7525 0.7525 9% 4.6614 99.84% 1.0684 68.35% 11 8 10.9819 99%

ln(Act Tot) = 0.9708 ln(Est Tot) + 0.5154 %Act New + 0.2505 0.953 0.3157 0.3157 55% 12.6866 100.00% 1.4884 82.50% 11 8 81.144 100%

%Tot Growth = -7.3E-08 Est Tot + 0.8772 %Act New + -0.2001 0.2057 1.48 0.5898 9% -0.1368 10.54% 1.3092 77.32% 11 8 1.0362 60%

ln(%Tot Growth) = -1.54E-06 Est Tot + 1.4108 %Act New + -2.025 0.3901 1.1306 1.1306 0% -1.5087 83.02% 1.0984 69.60% 11 8 2.5587 86%

ln(%Tot Growth) = -0.342 ln(Est Tot) + 1.7259 %Act New + 1.3164 0.3353 1.1803 1.1803 27% -1.1954 73.38% 1.3329 78.07% 11 8 2.0181 80%
Table 10-7: Software Growth Estimating Relationships

10.3.3.2 APPROACH THREE CONCLUSIONS

The advantages of the third approach are similar to those cited for Approach Two. The primary
disadvantage is that the dummy variable (percent actual new SLOC) is not statistically
significant, so further consideration of this approach was ceased. Also, this approach adds an
extra layer of uncertainty when estimating future programs due to the addition of a second
regression.

10.3.4 RECOMMENDED APPROACH

Table 10-8 summarizes the statistics for: 1) the two factors developed in Approach One and 2)
the most statistically significant regression equation developed in Approach Two.

 Estimating Methodology CVest Predict (20)
Mean 63% 0.82 25.00%
Median 22% 0.37 62.50%
Regression Equation Actual Total SLOC = 41,743 + (1.081 * Est Total SLOC) 0.33 31.00%

Table 10-8: Summary of the Statistics for SLOC Growth Methodology

In Approach One, the application of the mean resulted in a high CV and low Predict (20) value.
The mean also overestimated a significant amount of the time. The median, however, provided
the highest Predict (20) and one of the lowest CVs for the resulting estimate, and, by definition,
neither over- nor underestimated disproportionately.

In Approach Two, the results of the simple regression performed on total SLOC showed an
extremely high R2 value, indicating a good regression and a relatively low CV; however, the
Predict (20) was low and the equation tended to overestimate. Approach Three results were not
statistically significant.

To minimize the potential of overestimating a disproportionate amount of the time, NCCA
prefers to maximize Predict (20) (i.e., be closer to the most likely estimate a higher percentage
of the time) rather than minimize overall error. (As stated previously, this is in contrast to our
philosophy of minimizing standard error that was applied in earlier sections of this handbook.)
Therefore, based on the results of Approaches One and Two (since Approach Three was not
significant), NCCA recommends applying the median percent total growth factor of 22 percent
when contractor/program-specific data is unavailable for developing specific growth estimating
regressions or factors in a particular program. The major strength of this approach is that this
factor represents the “most likely” growth.

 Section 10 – Risk Analysis

10 - 10

10.4 CODE CONDITION CHANGE METHODOLOGY,
RESULTS AND CONCLUSIONS

Not only does the SLOC count change over time, but usually the code condition also changes.
The code condition (type and amount of reused and new SLOC) is an important input for
generating an ESLOC estimate and subsequent effort estimate. Initial estimates generally
overestimate the amount of reused SLOC and correspondingly underestimate the amount of
new SLOC (as shown in Table 10-5 previously). Since reused code is typically less costly to
develop than new code, a change in the reused versus new code distribution can cause a
significant change in cost. In addressing these issues, NCCA used the approaches described in
previous sections to develop the means of overcoming flawed code condition estimating
practices.

This section describes the procedures for adjusting the distribution of the estimated reused and
estimated new SLOC counts using the top-level standard factor approach (Approach One) and
regression analysis approach (Approach Two) as described previously.

As discussed in Section 4 - Effort Analysis: Significant Drivers, ESLOC are the weighted
sum of new and reused SLOC. Generally, the effort associated with developing reused code is
less than the effort to develop new lines of code, since reused code does not go through the full
software development process. Therefore, to accurately estimate the effort associated with a
program, the differences between new and reused SLOC must be considered. This is
accomplished by calculating ESLOC as follows:

Equivalent SLOC = New SLOC + (Efactor * Reused SLOC)

where Efactor (as discussed in Sections 4 through 6) is calculated quantitatively.

10.4.1 APPROACH ONE

Four standard factors were developed for the first approach: mean percentage, median
percentage, mean percentage points, and median percentage points. Means, SEEs, CVs,
Predict (20)s, and residuals were calculated in each case.

10.4.1.1 MEAN PERCENTAGE

The Mean Percentage is the average percentage increase in the estimated percent new SLOC
as follows:

Mean Percentage Increase =∑ ÷

− n1

SLOCNewEstimated%
SLOCActualNew%

This percentage was then applied to the estimated percent new SLOC. The disadvantage of
this factor was that the Mean Percentage was sensitive to extreme values.

 Section 10 – Risk Analysis

10 - 11

The Mean Percentage Increase was 38 percent with a Predict (20) of 36 percent62 and a CVest
of 37 percent. The residuals in Table 10-9 indicated that Mean Percentage Increase
overestimated 73 percent of the time.

A B C D
Record # Mission Est New Actual New %New Est %New Act %New Growth Y(est) e(i) %e(i)

(B/A) - 1 (0.38 x A) + A (C - B) (D/B)
15/16/17 C2 2763 5048 11.71 19.56 67.02 16.16 -3.3931 -17.35%

23/24/26/27 Testing 36900 46303 88.28 100.00 13.28 121.86 21.8606 21.86%
308 S/W Tools 20000 25000 44.44 55.56 25.00 61.35 5.7967 10.43%

327 C2 29524 119400 75.14 100.00 33.09 103.72 3.7199 3.72%

2461 Signal Proc 14800 25552 95.48 96.38 0.93 131.81 35.4331 36.77%
2613 C2 90000 120000 90.00 98.36 9.29 124.24 25.8777 26.31%

2616 Mission Plans 132000 537129 24.81 61.24 146.80 34.25 -26.9860 -44.07%
NCCA-2 C2 206650 394309 25.68 33.68 31.17 35.44 1.7644 5.24%

NCCA-3 C2 191350 210550 89.50 80.42 -10.14 123.55 43.1235 53.62%

NCCA-4 C2 65000 160000 42.48 86.49 103.58 58.65 -27.8409 -32.19%
NCCA-6 C2 517071 519600 41.49 40.84 -1.56 57.27 16.4305 40.23%

N = 11 Mean = 57.18 70.23 38.04% SEE = 26.03

CVest = 0.37

Predict (20) = 36.36%
Table 10-9: Code Condition Mean Percentage Statistics

10.4.1.2 MEDIAN PERCENTAGE

The median percentage used the “most likely” increase in percent estimated new SLOC. It was
the central value that divided the data into two groups of equal size and was calculated from the
percent actual increase of each program. The advantage of this factor was that the median
percentage was relatively insensitive to extreme values.

The Median Percentage Increase was 25 percent with a Predict (20) of 45 percent.63 In Table
10-10, the CVest is 30 percent, and the residuals demonstrate that the Median Percentage
neither overestimated nor underestimated a disproportionate amount of the time.

10.4.1.3 MEAN PERCENTAGE POINTS

The mean percent new growth was calculated as follows:

Mean Percentage Point Increase =
()% %Actual New SLOC Estimated New SLOC

n

−∑

62When applying the Mean Percentage regression, if the program is greater than 72 percent estimated New SLOC, assume the
estimated new SLOC is 100 percent.
63When applying the Median Percentage regression, if the program is greater than 80 percent estimated new SLOC assume the
estimated new SLOC is 100 percent.

 Section 10 – Risk Analysis

10 - 12

where n is the number of data points in the sample. The resulting mean percentage point
estimate is then added directly to the percent estimated new SLOC. The disadvantage was that
the mean percentage point estimate was sensitive to extreme values.

A B C D

Record # Mission Est New Actual New %New Est %New Act Actual %Inc Y(est) e(i) %e(i)

(B/A) - 1 (0.25 x A) + A (C - B) (D/B)

NCCA-3 C2 191350 210550 89.50 80.42 -10.14 111.87 31.4504 39.11%

NCCA-6 C2 517071 519600 41.49 40.84 -1.56 51.86 11.0191 26.98%

2461 Signal Proc 14800 25552 95.48 96.38 0.93 119.35 22.9795 23.84%

2613 C2 90000 120000 90.00 98.36 9.29 112.50 14.1393 14.38%

23/24/26/27 Testing 36900 46303 88.28 100.00 13.28 110.35 10.3469 10.35%

308 S/W Tools 20000 25000 44.44 55.56 25.00 55.56 0.0000 0.00%

NCCA-2 C2 206650 394309 25.68 33.68 31.17 32.09 -1.5844 -4.70%

327 C2 29524 119400 75.14 100.00 33.09 93.92 -6.0798 -6.08%

15/16/17 C2 2763 5048 11.71 19.56 67.02 14.64 -4.9201 -25.16%

NCCA-4 C2 65000 160000 42.48 86.49 103.58 53.10 -33.3819 -38.60%
2616 Mission Plans 132000 537129 24.81 61.24 146.80 31.02 -30.2221 -49.35%

Mean = 70.23

N = 11 Median = 25.00% SEE = 21.18

CVest = 0.30

Predict (20) = 45.45%
Table 10-10: Code Condition Median Percentage Statistics

As shown in Table 10-11, the mean estimated percentage of new SLOC is 57 percent, while the
mean actual percentage is 70 percent, increasing by an average of 13 percentage points.64 The
Predict (20) is 55 percent, the CVest is 24 percent and the residuals show that the mean
percentage point factor overestimated 73 percent of the time.

10.4.1.4 MEDIAN PERCENTAGE POINTS

The median percentage point factor added the “most likely” percentage point directly to the
percent estimated new SLOC. It was the central value that divided the data into two groups of
equal size and was calculated by taking the difference between percent actual new SLOC and
percent estimated new SLOC:

Median Percentage Point Increase = %Actual New SLOC - %Estimated New SLOC

The advantage of this factor was that the median percentage point was relatively insensitive to
extreme values, and it improved the Predict (20).

As shown in Table 10-12, the median percentage point Increase is eight percentage points with
a Predict (20) of 64 percent65 and CVest of 25 percent.

64When applying the mean percentage point regression, if the program is greater than 87 percent estimated new SLOC, assume the
estimated new SLOC is 100 percent.
65When applying the median percentage point regression, if the program is greater than 92 percent estimated new SLOC, assume
the estimated new SLOC is 100 percent.

 Section 10 – Risk Analysis

10 - 13

A B C D
Record # Mission Est New Actual New %New Est %New Act Actual %Pts Inc Y(est) e(i) %e(i)

(B - A) (13 + A) (C - B) (D/B)
15/16/17 C2 2763 5048 11.71 19.56 7.85 24.75 5.1988 26.59%

23/24/26/27 Testing 36900 46303 88.28 100.00 11.72 101.32 1.3235 1.32%
308 S/W Tools 20000 25000 44.44 55.56 11.11 57.49 1.9349 3.48%

327 C2 29524 119400 75.14 100.00 24.86 88.18 -11.8179 -11.82%
2461 Signal Proc 14800 25552 95.48 96.38 0.89 108.53 12.1545 12.61%

2613 C2 90000 120000 90.00 98.36 8.36 103.05 4.6853 4.76%
2616 Mission Plans 132000 537129 24.81 61.24 36.43 37.86 -23.3792 -38.18%

NCCA-2 C2 206650 394309 25.68 33.68 8.00 38.72 5.0426 14.97%
NCCA-3 C2 191350 210550 89.50 80.42 -9.08 102.55 22.1215 27.51%

NCCA-4 C2 65000 160000 42.48 86.49 44.00 55.53 -30.9569 -35.79%

NCCA-6 C2 517071 519600 41.49 40.84 -0.65 54.54 13.6928 33.53%

N = 11 Mean = 57.18 70.23 13 SEE = 16.83

CVest = 0.24

Predict (20) = 54.55%
Table 10-11: Code Condition Mean Percentage Point Statistics

A B C D

Record # Mission Est New Actual New %New Est %New Act Actual %Pts Inc Y(est) e(i) %e(i)

(B - A) (8 + A) (C - B) (D/B)

NCCA-3 C2 191350 210550 89.50 80.42 -9.08 97.50 17.0755 21.23%

NCCA-6 C2 517071 519600 41.49 40.84 -0.65 49.49 8.6468 21.17%

2461 Signal Proc 14800 25552 95.48 96.38 0.89 103.48 7.1085 7.38%

15/16/17 C2 2763 5048 11.71 19.56 7.85 19.71 0.1528 0.78%

NCCA-2 C2 206650 394309 25.68 33.68 8.00 33.68 -0.0033 -0.01%

2613 C2 90000 120000 90.00 98.36 8.36 98.00 -0.3607 -0.37%

308 S/W Tools 20000 25000 44.44 55.56 11.11 52.44 -3.1111 -5.60%

23/24/26/27 Testing 36900 46303 88.28 100.00 11.72 96.28 -3.7225 -3.72%

327 C2 29524 119400 75.14 100.00 24.86 83.14 -16.8638 -16.86%

2616 Mission Plans 132000 537129 24.81 61.24 36.43 32.81 -28.4251 -46.42%

NCCA-4 C2 65000 160000 42.48 86.49 44.00 50.48 -36.0028 -41.63%

Mean = 70.23

N = 11 Median %Pts = 8 SEE = 17.73

CVest = 0.25

Predict (20) = 63.64%
Table 10-12: Code Condition Median Percentage Point Statistics

10.4.2 APPROACH TWO

The second approach used regression analysis to develop a relationship of the form:

%Actual New SLOC = a + (b * %Estimated New SLOC)
where:

 Section 10 – Risk Analysis

10 - 14

%Estimated New SLOC = 1 - %Estimated Reused SLOC

Table 10-13 shows the regression results. The R2 values demonstrated that this approach
produced adequate regressions for percent actual new SLOC as presented in the Approach
Three Methodology and Results section.

Y(est) = X1(coeff) X1 + Constant R2 CVest Std ERR Predict (20) t(value) t(sig) N df F(value) F(sig)

%Act New = 0.8189 %Est New + 0.234 0.7426 0.22 0.1575 45% 5.0957 99.94% 11 9 25.9665 100%

ln(%Act New) = 1.4469 %Est New + -1.2919 0.6863 0.3196 0.3196 55% 4.4376 99.84% 11 9 19.6919 100%

ln(%Act New) = 0.7057 ln(%Est New) + 0.0563 0.7965 0.2575 0.2575 55% 5.9347 99.90% 11 9 35.2207 100%

Table 10-13: Approach Two - Code Condition Estimating Relationships Results

The best regression equation and its statistics follow:

%Actual New SLOC = 0.234 + (0.8189 * %Estimated New SLOC)
 R2 = 0.74; CV = 0.22; Predict (20) = 45%; Range 16 – 1,246 KSLOC

Although this approach produced an adequate regression for percent actual new SLOC in the
linear form, the Predict (20) was not as good as in Approach One, and the regression tended to
overestimate.

10.4.3 RECOMMENDED APPROACH FOR CODE CONDITION

CHANGE

Table 10-14 displays a summary of the statistics for the four factors along with the statistics for
the most statistically significant regression equation:

Estimating Methodology CVest Predict (20)

Mean % 38% 0.37 36.36%
Median % 25% 0.30 45.45%

Mean %Points 13 0.24 54.55%
Median %Points 8 0.25 63.64%

Regression Eqn %Actual New SLOC = 0.234 + (0.82 x %Est New SLOC) 0.22 45.00%
Table 10-14: Summary of Statistics for Code Condition Methodology

All four factors resulted in low CVest, however both the mean percentage and the mean
percentage point factor had disproportionate residuals. To minimize the potential of
overestimating a disproportionate amount of the time, NCCA (as stated for the SLOC Growth
analysis) prefers to maximize Predict (20) (i.e., be closer to the most likely estimate a higher
percentage of the time) rather than minimize overall error. (As stated previously, this is in
contrast to our philosophy of minimizing standard error that was applied in earlier sections of
this handbook.) Therefore, because the median percentage point factor had the highest Predict
(20) of 64 percent and one of the lowest CVs, it is the recommended approach for conducting a
top-level risk analysis of the initial code condition assumptions. This approach is applied as
follows:

[10-3]

 Section 10 – Risk Analysis

10 - 15

• If estimated new SLOC is greater than or equal to 92 percent, assume the program is 100
percent new SLOC.

• If estimated new SLOC is less than 92 percent, increase the percentage of estimated new

SLOC by the median percentage point factor of eight percentage points, and reduce the
percentage of reused SLOC by eight percentage points. These changes will, by definition,
translate to an increase in the ESLOC count.

10.5 OVERALL RECOMMENDED APPROACH

NCCA’s preferred approach to conducting a risk analysis of the initial SLOC estimate requires
the analyst to first determine whether contractor or program specific data is available to develop
tailored risk analysis relationships. Only if contractor or program specific data is unavailable,
should the analyst use these standardized tools to perform the risk analysis. In general, the
analyst first increases the estimated total SLOC and then increases the estimated new-to-
reused SLOC ratio. Specifically, the analyst should use the following process:

Step 1: Apply the median percent total SLOC growth factor of 22 percent (i.e., as 1.22) to the
SLOC estimate. If the SLOC estimate includes reused SLOC, continue to Step 2; otherwise
skip to Step 4.

Step 2: If new SLOC is greater than or equal to 92 percent of the total SLOC estimate,
assume the program is 100 percent new SLOC and skip to Step 4. If new SLOC is less than 92
percent, proceed to Step 3.

Step 3: Increase the estimated percentage of new SLOC by the median percentage point
factor of eight percentage points, and reduce the percentage of reused SLOC by eight
percentage points. This changes the ESLOC count. (See the next section for two examples.)

Step 4: Use the output of the steps above as the input to the selected effort estimating
methodology and generate an estimate of the associated effort.

Step 5: Estimate the schedule and compute the associated schedule risk by comparing the
risk adjusted and non-risk adjusted schedule estimates.

Step 6: Apply the appropriate labor, profit, and G & A rates to the effort estimate.

Step 7: Compute the risk dollars by comparing the risk adjusted and non-risk adjusted (i.e.,
baseline) cost estimates.

 Section 10 – Risk Analysis

10 - 16

Figure 10-1 below depicts this process:

Step 1

Calculate NCCA SLOC
Growth Estimate

(Apply 22%
Growth Factor)

Is
Reuse

Involved
?

Re-Distribute
New/Reused SLOC

Add/Subtract 8
 percentage pts

Input Into Effort
Estimating

Relationship

Estimate
 Schedule

Apply
Rates

STOP

Is New
SLOC > 92% ?

Assume
Program is
100% New

SLOC

Code Condition
Step 2 Step 3

Revised Effort
Estimation

Step 4

Revised
Schedule

Step 5

Cost
Estimation

Step 6

Yes

Yes

No

No

Compare New
Cost Estimate
with Original

Calculate
“Risk”
Step 7

Figure 10-2: Recommended Risk Analysis Process

10.5.1 EXAMPLE ONE

Assumptions for this example are as follows:

Initial SLOC Estimate = 112,450
Initial Code Condition Estimate = 80% New SLOC and 20% Reused SLOC
NCCA Efactor66 = 30%

 Equivalent New SLOC (1)67 = New SLOC + (Reused SLOC * Efactor)
 = (0.8 * Total SLOC) + (0.2 * Total SLOC * Efactor)
 = (0.8 * 112,450) + (0.2 * 112,450 * 0.3)
 = 89,960 + 6,747
 = 96,707

Step 1: Assuming contractor/program-specific data is unavailable, the analyst should apply the
NCCA standard default factor of a 22 percent increase to the initial estimate of the total SLOC to
obtain a revised (i.e., risk) total SLOC count.

 Revised Total SLOC = (0.22 * Initial SLOC Estimate) + Initial SLOC Estimate
 = (0.22 * 112,450) + 112,450
 = 137,189

66Code condition will have been provided, and the analyst will have already solved for the Efactor in effort estimation.
67For example purposes only. In practice, if the analyst is using NCCA standard or tailored regressions, the ESLOC calculation
would occur in the effort estimation procedure.

 Section 10 – Risk Analysis

10 - 17

This increase in total SLOC count translates to an increase in the ESLOC count as follows:

Revised Equivalent = New SLOC + (Reused SLOC * Efactor)
New SLOC = (0.8 * Revised Total SLOC) + (0.2 * Revised Total SLOC * 0.3)
(Code growth only) = (0.8 * 137,189) + (0.2 * 137,189 * 0.3)
 = 109,751 + 8,231
 = 117,982

Step 2: Determine whether the %new code is greater than 92 percent. Since it is not (80
percent) proceed to Step 3.

Step 3: To obtain the revised new SLOC versus reused SLOC counts, the analyst should
increase the new SLOC percentage by eight percentage points and decrease the reused SLOC
percentage by eight percentage points:

Estimated New SLOC with Growth:

= 0.80 New * Revised Total SLOC
= 0.80 * 137,189
= 109,751

 Estimated New SLOC with Growth and code condition adjustment:
= [.80 (%New) + 0.08 (Code Condition Adj)] * Revised Total SLOC
= 0.88 * 137,189
= 120,726

and

 Estimated Reused SLOC with growth:
= 0.20 (Reused SLOC) * Revised Total SLOC
= 0.20 * 137,189
= 27,438

 Estimated Reused SLOC with growth and code condition adj:

= [0.20 (Reused) + 0.08 (Code Condition Adj)] * Revised Total SLOC
= 0.12 * 137,189
= 16,463

or alternatively,

Estimated Reused SLOC with growth and code condition adj:

= Revised Total SLOC - Est New SLOC with Growth & Code Condition Adj
= 137,189 - 120,726
= 16,463

These revised estimates of new SLOC versus reused SLOC translate into a revised ESLOC
count.

 Section 10 – Risk Analysis

10 - 18

Equivalent New SLOC 68 = (Revised New SLOC) + (Revised Reused SLOC * Efactor)
(Code growth and = (120,726) + (16,463 * 0.3)
 code condition) = 120,726 + 4,939

 = 125,665

Step 4: Input the revised ESLOC into the effort estimation process.

Step 5: Estimate the schedule and compute the associated schedule risk by comparing the risk
adjusted and non-risk adjusted (i.e., baseline) schedule estimates.

Step 6: Apply the appropriate labor, profit, and G & A rates.

Step 7: Compute the risk dollars by comparing the risk adjusted and non-risk adjusted (i.e.,
baseline) cost estimates.

In summary, total code growth and code condition risk is 28,958 ESLOC, or the difference
between 96,707 and 125,665. This difference represents approximately a 30 percent increase
in the ESLOC count.

10.5.2 EXAMPLE TWO

Assumptions for this example are as follows:

Initial SLOC Estimate = 112,450
Initial Code Condition Estimate = 94% New SLOC and 6% Reused SLOC
NCCA Efactor = 30%

 Equivalent New SLOC = New SLOC + (Reused SLOC * Efactor)
 = (0.94 * Total SLOC) + (0.06 * Total SLOC * Efactor)
 = (0.94 * 112,450) + (0.06 * 112,450 * 0.3)
 = 105,703 + 2,024
 = 107,727

Step 1: Assuming contractor/program specific data is unavailable, the analyst should apply the
NCCA standard default factor of a 22 percent increase to the initial estimate of the total SLOC to
obtain a revised (i.e., risk) total SLOC count:

Estimated Total SLOC with Growth:

= (0.22 * Initial SLOC Estimate) + Initial SLOC Estimate
= (0.22 * 112,450) + 112,450
= 137,189

Step 2: In this case, new SLOC is greater than 92 percent; therefore, new SLOC increases to
100 percent with no reused SLOC; that is, 137,189 is the total amount of SLOC, and it is all new
SLOC (i. e., total SLOC equals ESLOC).

68For example purposes only. In practice, if the analyst is using NCCA standard or tailored regressions, the ESLOC calculation
would occur in the effort estimation procedure.

 Section 10 – Risk Analysis

10 - 19

Step 3: Skip, since the SLOC are all new.

Step 4: Input the revised ESLOC (also equal to total SLOC) into the effort estimation process.

Step 5: Estimate the schedule and compute the associated schedule risk by comparing the
risk adjusted and non-risk adjusted (i.e., baseline) schedule estimates.

Step 6: Apply the appropriate labor, profit, and G & A rates.

Step 7: Compute the risk dollars by comparing the risk adjusted and non-risk adjusted (i.e.,
baseline) cost estimates.

In summary, total code growth and code condition risk is 29,462 ESLOC, or the difference
between 107,727 and 137,189. This difference represents approximately a 27 percent increase
in the ESLOC count.

10.6 FUTURE EFFORTS

Future efforts to improve the SLOC Growth Analysis should consider the following:

1) Expanding the NCCA Normalized SLOC Growth Database to include more program-level

data points, particularly programs greater than 100 KSLOC. This should result in a
database that is more normally distributed than the current database, which would decrease
the uncertainty of estimating future programs where the size lies outside the current range.

2) Expanding the NCCA Normalized SLOC Growth Database to include MIS data points.

Since the development of MIS programs is increasing, NCCA needs insight into how and
why these programs grow. Additionally, since it is generally agreed that function point
estimating is more appropriate for MIS programs, differences in growth may be experienced.

3) Researching additional explanatory variables to gain insight into SLOC growth. This

analysis failed to uncover the reasons for SLOC code growth (i. e., requirements creep, poor
estimating, etc.).

4) Identifying the timing of the initial estimates by phase (SDR, SSR, FQT, etc.) for the current

NCCA Normalized SLOC Growth Database and any new data points to determine when
SLOC growth occurs. This would show when growth is most likely to occur, thus facilitating
the development of appropriate funding profiles.

5) Identifying the impact of schedule on SLOC growth. This is important because increases or

decreases in schedule may lead to adjustments in requirements which may then lead to
corresponding changes in size.

CONCLUSIONS

Because software development is influenced by so many factors which either are not or can not
be captured quantitatively, software cost estimating will remain a great challenge.

NCCA has attempted to remove some of the subjectivity involved in software cost estimating by
developing effort, schedule, labor rate and risk estimating relationships and factors based
primarily on objective or easily quantifiable parameters. However, because the regressions and
factors are top-level and reflect industry averages, the resulting standard errors for effort and
schedule are typically above 40 percent. Although the resulting statistics for the regressions
and factors of the labor rate and risk analyses were much better in comparison, the limited size
of the underlying databases causes concern.

Many of the effects NCCA tried to measure (such as the effect of embedded versus non-
embedded development) are difficult to isolate. These analyses were not performed with data
from an experimental environment in which factors could be controlled. Therefore, in an attempt
to control for these factors, the data was filtered into specific subsets. Clearly, analysts would
have to start with a huge database to isolate the effect of more than a few specific factors.

Analysts need to pay special attention to the fact that the NCCA standard effort regressions
represent industry averages. They represent both old and new processes and tools, well-
behaved and ill-behaved programs, and relatively simple and complex programs. Therefore,
these top-level regressions should NOT be the estimating tools of choice. Instead, contractor-
specific data should be collected for the projects being estimated, where the data represents
completed projects that are analogous to both the project being estimated and the type of
process that will be used to develop it. If, due to lack of data, analysts choose to utilize these
tools, they should realize and explicitly state the associated variance. In fact, if possible, the
statistical range resulting from the tools, in lieu of, or at least in addition to, the point estimate,
should be provided.

To truly capture the significant software development drivers while decreasing the associated
variances, the data utilized to develop software development regressions needs to be:

• From the same contractor
• From the same software development staff
• For a similar set of requirements
• From a similar set of tools and processes
• From a similar mission environment
• At the same level of complexity

11

Section 11 – Conclusions

Since this would require an extensive number of programs as well as effort and time, the best
alternative in the interim is to develop the most analogous set of normalized data available.

Collecting more data, sensitive to the list provided above, would lead to better overall top-level
regressions. However, it is unlikely that the variances of top-level regressions will ever
approach the variances of lower-level, domain, mission and contractor-specific regressions.
Furthermore, in order to ensure the integrity of lower-level regressions, a sufficient quantity of
data points must be obtained.

In conclusion, the Navy’s ability to estimate software development cost is directly related to the
quantity and quality of data collected for completed efforts. Because there are so many
variables affecting software development productivity, cost, and schedule, a concerted data
collection effort is required to improve our estimating tools. By collecting all the data currently
available to NCCA and creating normalized databases, NCCA has taken the first and most
critical step in a challenging process of software cost estimating. The next steps will focus on
those areas of the database which are deficient, in an attempt to further capture objective,
significant software productivity drivers and to increase the associated scope to which the tools
can reasonably be applied. It is our hope that, at a minimum, the analyst is now aware of those
variables which should be considered and addressed when gathering data and developing
software cost estimates.

REFERENCES

[1] Frazier, Thomas, Bailey, John and Young, Melissa, “Comparing ADA and Fortran LOC:
Some Experimental Results,” IDA Paper P-2899, November 1993.

[2] Software Engineering Laboratory, “Impact of Ada and Object-Oriented Design in the
Goddard Space Flight Center “, SEL-95-001, March 1995.

[3] Parks, Robert, “Software Size Measurement: A Framework for Counting Source
Statements,” Software Engineering Institute, CMU/SEI-92-TR-20, 1992.

[4] Frieden, David R., Principles of Naval Weapons Systems, Naval Institute Press, 1985.

[5] Boehm, Barry, Software Engineering Economics, Prentice Hall, 1981.

[6] Ratliff, Robert W., Bowden, Robin G., and Cheadle, William, “SASET 3.0 User’s Guide,”
April 1993.

[7] Novak-Ley, Gina and Stukes, Sherry, “Space and Missile Systems Center Software
Database, User’s Manual” Version 1.0, MCR.

[8] Funch, Paul, “Software Cost Data Base,” MITRE Study #MTR 10329, October 1987.

[9] Giallombardo, Robert J., “Effort and Schedule Estimating Models for Ada Software
Developments”, MITRE Corporation, #MTR11303, May 1992.

[10] Software Engineering Laboratory, “Cost and Schedule Estimation Study Report”, SEL-
93-002, November 1993.

[11] Software Engineering Laboratory, “Recommended Approach to Software Development,
Revision 3,” SEL-81-305, June 1992.

[12] Dechoretz, Jason and Stukes, Sherry, “Software Estimating Model Improvement
Program REVIC Recalibration,” MCR Study #TR-9359-51-B, April 1994.

[13] IITRI Research Institute, “Test Case Study: Estimating the Cost of Ada Software
Development,” IITRI Report , April 1989.

[14] Spatz, Chris and Johnston, James O., Basic Statistics, 3rd Edition, Brooks/Cole
Publishing Company, 1984.

[15] Software Technology Support Center, Department of the Air Force, Guidelines for
Successful Acquisition and Management of Software Intensive Systems: Weapon Systems,
command and control Systems, Management Information Systems, Vol 1, Version 1.1, U.S.
Government Printing Office, Washington, D.C., Feb 1995

[16] Herd, James, et al, "Software Cost Estimation Study: Study Results,” Doty Associates,
RADC-TR-77-220, Volume 1, June 1977.

[17] Wolverton, R.W., "Software Costing,” Handbook of Software Engineering, Van Nostrand
Reinhold Company, pp 469-493, 1984.

[18] Pressman, Roger S., Software Engineering A Practitioner's Approach, 3rd Edition,
McGraw Hill,1992.

[19] Hines, William W. and Montgomery, Douglas C., Probability and Statistics in Engineering
and Management Science, Second Edition, John Wiley and Sons, 1980.

[20] J. Verner and G. Tate, “A Software Size Model,” IEEE Transactions on Software
Engineering, Vol. 18, No. 4, pp. 265-278, April, 1992.

[21] S. D. Conte, Dunsmore, H. E., and Shen, V. Y., Software Engineering Metrics and
Models, Menlo Park, CA: Benjamin/Cummings, 1986.

[22] Om, N. and Bui, J., “Software Development Cost and Schedule Estimating for Space
Systems,” Report for the Ballistic Missile Defense Organization, June 1994.

ACRONYM LIST

498 MIL-STD-498
2GL Second-Generation Language
3GL Third-Generation Language
4GL Fourth-Generation Language
AAF Adaptation Adjustment Factor
ACO Administrative Contracting Officer
ACWP Actual Cost of Work Performed
AIS Automated Information System
ASW Anti-Surface Warfare
C2 Command and Control
C3 Command, Control, and Communications
CCDR Contractor Cost Data Report
CDR Critical Design Review
CDRL Contract Data Requirements List
CED Concept Exploration and Definition
COCOMO Constructive Cost Model
COTS Commercial-Off-The-Shelf
CP Commented Physical
CPCI Computer Program Configuration Item
CPR Cost Performance Report
CSC Computer Software Component
CSCI Computer Software Configuration Item
CSU Computer Software Unit
CV Coefficient of Variation
DCAA Defense Contracting Audit Agency
DEM/VAL Demonstration and Validation
DoD Department of Defense
DOS Disk Operating System
DSI Delivered Source Instructions
DSLOC Delivered Source Lines Of Code
EAF Effort Adjustment Factor
Efactor Equivalent Code Conversion Factor
EMD Engineering and Manufacturing Development
ESD Electronic Systems Division
ESLOC Equivalent New Source lines of code
EW Electronic Warfare
FPRA Forward Pricing Rate Agreement
FQT Formal Qualification Test
FW Firmware

G&A General and Administrative
HOL High Order Language
ICE Independent Cost Estimate
IDA Institute for Defense Analyses
IOC Initial Operational Capability
IITRI IIT Research Institute
KSLOC Thousands of Source Lines of Code
L Logical
LRE Latest Revised Estimate
MAD Mean Absolute Deviation
MCCR Mission Critical Computer Resources
MCR Management Consulting and Research, Inc.
MIL-STD Military Standard
MIS Management Information System
MM Man-Months
NCCA Naval Center for Cost Analysis
OFP Operational Flight Program
OTE Operational Test and Evaluation
P Physical
PDL Program Design Language
PDR Preliminary Design Review
PDRR Program Definition and Risk Reduction
RC %Re-Code
RD %Re-Design
REVIC Revised Intermediate COCOMO
RFP Request for Proposal
RT %Re-Test
SASET Software Architecture Sizing & Estimating Tool
SDP Software Development Plan
SDR System Design Review
SEE Standard Error of the Estimate
SEL Software Engineering Laboratory
SIT System Integration and Test
SLOC Source Lines of Code
SMC Space and Missile Center
SRS Software Requirements Specification
SSCAG Space Systems Cost Analysis Group
SSR Software Specification Review
STP Software Test Plan
WBS Work Breakdown Structure

